
ptg

1010
Questions and Answers:
Trivia and Quiz Games

Storing and Retrieving Game Data

Trivia Quiz

Deluxe Trivia Quiz

Picture Quiz

ptg

Different games can be used for different purposes. However, few games can be used
for as diverse purposes as quiz games. You can have a quiz about almost any subject
and at any difficulty level. The most difficult part about making quiz games is making
them interesting. After all, a few multiple-choice questions is nothing more than a test.
And few people like taking tests.

Quiz and trivia games are data driven. They rely on the questions and answers as pri-
mary game elements. This text data is best stored in external files and imported into the
game dynamically. We’ll look at strategies for doing this before starting on the games.

After that, we’ll build a quiz game that takes an external text file and uses the questions
and answers within for the game data. Then we’ll go a step further and use external
images in a picture quiz game.

Storing and Retrieving Game Data
Source Files

http://flashgameu.com

A3GPU210_XMLExamples.zip

A trivia game needs a list of questions and answers. The best way to bring in this data
at the start of a game is by reading in an XML file.

Understanding XML Data
XML stands for eXtensible Markup Language. Its purpose is to have a simple format to
be used to exchange information between systems.

If you’ve never seen an XML file before, but you have worked with HTML, you’ll notice
a similarity. Less than and greater than symbols are used in XML to enclose key defin-
ing words called tags. Take a look at this example:
<trivia>

<item category="Entertainment">
<question>Who is known as the original drummer of

the Beatles?</question>
<answers>

<answer>Pete Best</answer>
<answer>Ringo Starr</answer>
<answer>Stu Sutcliffe</answer>
<answer>George Harrison</answer>

</answers>
<hint>Was fired before the Beatles hit it big.</hint>

Chapter 10: Questions and Answers: Trivia and Quiz Games348

http://flashgameu.com

ptg

Storing and Retrieving Game Data 349

<fact>Pete stayed until shortly after their first
audition for EMI in 1962, but was fired on
August 16th of that year, to be replaced by
Ringo Starr.</fact>

</item>
</trivia>

This XML file represents a one-item trivia quiz. The data is in a nested format—tags
inside of other tags. For instance, the entire document is one <trivia> object. Inside of
that, is one <item>. In this <item> is one <question>, an <answers> object with four
<answer> objects, and a <hint> and <fact> object.

NOTE
The individual objects in XML documents are also called nodes. A node can simply
hold some data or it can have several child nodes. Some nodes have extra data
associated with them, like the item node in the example has category. These are
called attributes.

You can place an XML document right inside your ActionScript 3.0 code. For instance,
the example movie xmlExample.fla has this in the frame 1 script:
var myXML:XML =

<trivia>
<item category="Entertainment">

<question>Who is known as the original drummer of
the Beatles?</question>

<answers>
<answer>Pete Best</answer>
<answer>Ringo Starr</answer>
<answer>Stu Sutcliffe</answer>
<answer>George Harrison</answer>

</answers>
<hint>Was fired before the Beatles hit it big.</hint>
<fact>Pete stayed until shortly after their first

audition for EMI in 1962, but was fired on
August 16th of that year, to be replaced by
Ringo Starr.</fact>

</item>
</trivia>

Notice how no quotes or parenthesis were needed around the XML data. It can simply
exist within ActionScript 3.0 code (although you can see how this might get unwieldy if
the data were longer).

But now that we have some XML data in an XML object, we can play with how to
extract information from it.

ptg

NOTE
XML data handling was vastly improved with ActionScript 3.0. Previously, you had to
use more complex statements to find a specific node in the data. The new XML object
in ActionScript 3.0 is different from the XML object in ActionScript 2.0, meaning that
you can’t directly convert from one to the other. So, beware of old code examples that
might be in ActionScript 2.0 format.

To get the question node from the data, we would simply do this:
trace(myXML.item.question);

That’s pretty straightforward. To get an attribute, you would use the attribute function:
trace(myXML.item.attribute("category"));

NOTE
A shortcut to getting the attribute is to use the @ symbol. So, instead of
myXML.item.attribute("category"), you can also write myXML.item.@category.

In the case of the <answers> node, we’ve got four answers. These can be treated like an
array and accessed with brackets:
trace(myXML.item.answers.answer[1]);

Getting the number of nodes inside another node, like the <answer> nodes, is a little
more obscure. But, it can be done like this:
trace(myXML.item.answers.child("*").length());

The child function returns a child of a node specified by a string or number. But using
"*" returns all the child nodes. Then, using length() returns the number of child
nodes. If you simply try to get the length() of a node, you’ll only get 1 as a result
because one node is always one node long.

Now that you know how to find your way around XML data, let’s start dealing with
larger XML documents imported from external files.

Importing External XML Files
When XML is saved as a file, it is similar to a plain-text file. In fact, you can open an
XML file with most text editors. The file trivia1.xml is a short file with just 10 trivia
quiz items in it.

To open and read an external file, we’ll use the URLRequest and URLLoader objects.
Then, we’ll set an event to trigger when the file has been loaded.

Chapter 10: Questions and Answers: Trivia and Quiz Games350

ptg

The following code sample shows XML loading code from xmlimport.as. The con-
structor function will create a URLRequest with the name of the XML file. Then, the
URLLoader will start the download.

NOTE
You can pass any valid URL to URLRequest. Using just a filename, as we are here,
means that the file should be next to the SWF Flash movie, in the same folder.
However, you can specify a subfolder, or even use ../ and other path functions to give
it a relative URL. You can also use absolute URLs. This works both on the server, and
while testing locally on your machine.

We’ll attach a listener to the URLLoader. This listener will call xmlLoaded when the file
has been completely downloaded:
package {

import flash.display.*;
import flash.events.*;
import flash.net.URLLoader;
import flash.net.URLRequest;

public class xmlimport extends MovieClip {
private var xmldata:XML;

public function xmlimport() {
xmldata = new XML();
var xmlURL:URLRequest = new URLRequest("xmltestdata.xml");
var xmlLoader:URLLoader = new URLLoader(xmlURL);
xmlLoader.addEventListener(Event.COMPLETE,xmlLoaded);

}

The xmlLoaded function takes the data loaded from event.target.data and converts it
to XML for storage in xmldata. As a test, it will put the second answer of the first ques-
tion to the Output window:

function xmlLoaded(event:Event) {
xmldata = XML(event.target.data);
trace(xmldata.item.answers.answer[1]);
trace("Data loaded.");

}
}

}

NOTE
XML objects are like arrays in that they are zero based. So the first answer in the pre-
vious example is at position 0, and the second answer is at position 1.

Storing and Retrieving Game Data 351

ptg

Trapping Load Errors
Errors happen, and it is definitely useful to have some error checking. You can do this
by adding another event to URLLoader:
xmlLoader.addEventListener(IOErrorEvent.IO_ERROR,xmlLoadError);

And then, you can get the error message from the event returned to xmlLoadError:
function xmlLoadError(event:IOErrorEvent) {

trace(event.text);
}

However, I would not tell the end user the error message verbatim. For instance, if
you just remove the file and try to run the movie, you get this error, followed by
the filename:
Error #2032: Stream Error. URL: file:

Not an error message you want to show a player. Probably “Unable to load game file”
is a better option.

Now you know how to retrieve larger XML documents, like the kind you will need to
build trivia games.

Trivia Quiz
Source Files

http://flashgameu.com

A3GPU210_TriviaGame.zip

Trivia first became a form of entertainment in the 1950s with the advent of television.
Quiz shows became popular and, if anything, have grown more popular over the years.

In the 1980s, board games like Trivial Pursuit became popular, allowing people to play
trivia games (in addition to watching them). Soon they became available on computers
and the Internet.

Trivia games are a good way to address any subject in game form. Have a website
about pirates? Make a pirate trivia game. Building a CD-ROM for a conference in
Cleveland? Add a trivia game with interesting facts about the city.

Let’s build a simple quiz game first, and then go on to make a game with more bells
and whistles later.

Chapter 10: Questions and Answers: Trivia and Quiz Games352

http://flashgameu.com

ptg

Designing a Simple Quiz Game
A basic trivia game is just a series of questions. The player reads one question, and then
chooses an answer from several selections. Players get a point, or some sort of credit, if
they get it right. Then, the game moves on to the next question.

We’ll build this game like all of the rest: with three frames, the action taking placing in
the middle frame.

The action, in this case, is a series of text and buttons. We’ll start off by asking players
if they are ready to go. They’ll click a button to start (see Figure 10.1).

Trivia Quiz 353

Figure 10.1
At the start of the
game, players are
presented with a
button they must
click before the
first question.

Next, they’ll be presented with a question and four answers. The player must choose
one answer. If the player gets it right, she will be told “You Got It!” If she is wrong, she
will be told “Incorrect.”

Either way, players get another button that they must press to advance to the next
question.

Check out TriviaGame.fla and try playing to get a feel for how it goes. Now, let’s
build the game.

Setting Up the Movie
The movie file uses only two frames rather than the three we’ve been using. We’ll need
one new element in our movie library to make the quiz game. This will be a circle with
a letter in it, which will display next to an answer. Figure 10.2 shows the movie clip.

ptg

The text field in the Circle movie clip is named letter. We’ll be creating four of these,
one for each answer, and placing it next to the answer text. The letter in each will be
different: A, B, C, or D.

NOTE
If you look closely at Figure 10.2, you can see the registration point for the movie clip
off to the upper right. This will match the 0,0 location of the text field that will go next
to it. This way, we can set the Circle and the answer text field to the same location,
and they will appear next to each other rather than on top of one another.

The same technique of a background graphic and a text field will be used in the
GameButton movie clip. This will allow us to use the same button movie clip for various
buttons throughout the game.

The movie also contains some background graphics, notably a title and some horizontal
lines (shown previously in Figure 10.1). Also, remember to embed the font we are
using. In this case, it is Arial Bold. You can see it in the library in Figure 10.2.

Setting Up the Class
Because this game loads the quiz data from an external file, we need some parts of the
flash.net library to use the URLLoader and URLRequest functions:
package {

import flash.display.*;
import flash.text.*;
import flash.events.*;
import flash.net.URLLoader;
import flash.net.URLRequest;

Chapter 10: Questions and Answers: Trivia and Quiz Games354

Figure 10.2
The Circle movie
clip contains a
dynamic text
field and a back-
ground circle.

ptg

The game will use a variety of variables. We’ll be putting the data loaded from the file
into dataXML. We’ve also got several different text formats and some references to
dynamic text fields that we’ll be creating:

public class TriviaGame extends MovieClip {

// question data
private var dataXML:XML;

// text formats
private var questionFormat:TextFormat;
private var answerFormat:TextFormat;
private var scoreFormat:TextFormat;

// text fields
private var messageField:TextField;
private var questionField:TextField;
private var scoreField:TextField;

The plan for sprites is to have one gameSprite that contains everything. Inside of that,
we’ll have a questionSprite that holds all the elements of a single quiz question: a text
field for the question and other sprites for the answers. The answerSprites will contain
the text fields and Circle movie clips for each answer, which will be stored in their own
sprites. We don’t need a class variable to reference those, however, because they will be
neatly stored in the answerSprites sprite.

There is also a reference for the GameButton, so that when we create a button, we can
use this reference to remove it:

// sprites and objects
private var gameSprite:Sprite;
private var questionSprite:Sprite;
private var answerSprites:Sprite;
private var gameButton:GameButton;

To keep track of game state, we need questionNum, which tracks the question we are
on; numCorrect, which is essentially the player’s score; and numQuestionsAsked, which is
another aspect of the player’s score.

To keep track of the question being asked, we’ll put all four answers in random order
into the answers array. Before we shuffle them, however, we’ll take note of the original
first answer, which should be the correct one, in the correctAnswer variable:

// game state variables
private var questionNum:int;
private var correctAnswer:String;
private var numQuestionsAsked:int;
private var numCorrect:int;
private var answers:Array;

Trivia Quiz 355

ptg

The constructor function will create the gameSprite and then set all three TextFormat
objects up:
public function startTriviaGame() {

// create game sprite
gameSprite = new Sprite();
addChild(gameSprite);

// set text formats
questionFormat = new TextFormat("Arial",24,0x330000,

true,false,false,null,null,"center");
answerFormat = new TextFormat("Arial",18,0x330000,

true,false,false,null,null,"left");
scoreFormat = new TextFormat("Arial",18,0x330000,

true,false,false,null,null,"center");

NOTE
There is no way to duplicate a TextFormat object. If you simply set answerFormat =
questionFormat and then make a change to one, it changes them both. So, it is
important to make new TextFormat objects for each variable.

However, you can set a temporary variable, like myFont to a value like "Arial", and
then use myFont in place of "Arial" in every TextFormat declaration. Then, you can
alter the font used in the game with a single change in one place.

When the game starts, the scoreField and messageField are created. Instead of creat-
ing a TextField, adding it with addChild, and setting each of its properties for every
piece of text we need, we’ll make a utility function called createText that does this all
for us in one line of code. For instance, the messageField will contain the text “Loading
Questions…” using the format questionFormat. It places it in the gameSprite at 0,50
with a width of 550. We’ll look at createText later on:

// create score field and starting message text
scoreField = createText("",questionFormat,gameSprite,0,360,550);
messageField = createText("Loading Questions...",questionFormat,

gameSprite,0,50,550);

After the game state is set, showGameScore is called to place the score text at the bottom
of the screen. We’ll look at that later, too.

Then xmlImport is called to retrieve the quiz data:
// set up game state and load questions
questionNum = 0;
numQuestionsAsked = 0;
numCorrect = 0;

Chapter 10: Questions and Answers: Trivia and Quiz Games356

ptg

showGameScore();
xmlImport();

}

The text Loading Questions… will appear on the screen and remain there until the XML
document has been read. While testing, this might be less than a second. After the
game is on a server, it should appear for a little longer, depending on the responsive-
ness of the player’s connection.

Loading the Quiz Data
Questions are loaded using functions similar to the example at the beginning of this
chapter. No error checking is done, to keep things simple. The file trivia1.xml con-
tains 10 items:
// start loading of questions
public function xmlImport() {

var xmlURL:URLRequest = new URLRequest("trivia1.xml");
var xmlLoader:URLLoader = new URLLoader(xmlURL);
xmlLoader.addEventListener(Event.COMPLETE, xmlLoaded);

}

After the loading is complete, the data is placed in dataXML. Then, the text message,
which had been showing Loading Questions…, is removed. It is replaced with a new
message: Get ready for the first question!

Another utility function is called to create a GameButton. In this case, the button label GO!
is placed inside the button. We’ll look at showGameButton a little later in this chapter:
// questions loaded
public function xmlLoaded(event:Event) {

dataXML = XML(event.target.data);
gameSprite.removeChild(messageField);
messageField = createText("Get ready for the first

question!",questionFormat,gameSprite,0,60,550);
showGameButton("GO!");

}

The game now waits for the player to click the button.

Message Text and Game Button
Several utility functions are needed in this game to create text fields and buttons. These
cut down the amount of code needed quite a bit. We don’t have to repeat the same new
TextField, addChild, and x and y settings every time we create a text field.

What createText does is take a series of parameters and make a new TextField. It sets
the x, y, width, and TextFormat values to the values passed in as parameters. It also sets

Trivia Quiz 357

ptg

some constant parameters, such as multiline and wordWrap, which will be the same for
everything created in the game.

The alignment of the text in the field will vary between centered and left justified. This is
included in the TextFormat. However, we want to set the autoSize property of the field
to the appropriate value, so a test is performed, and autoSize is set to either
TextFieldAutoSize.LEFT or TextFieldAutoSize.RIGHT.

Finally, the text of the field is set, and the field is added to the sprite passed in as
another parameter. The TextField is returned by the function, so we can set a variable
to reference it for later removal:
// creates a text field
public function createText(text:String, tf:TextFormat,

s:Sprite, x,y: Number, width:Number): TextField {
var tField:TextField = new TextField();
tField.x = x;
tField.y = y;
tField.width = width;
tField.defaultTextFormat = tf;
tField.selectable = false;
tField.multiline = true;
tField.wordWrap = true;
if (tf.align == "left") {

tField.autoSize = TextFieldAutoSize.LEFT;
} else {

tField.autoSize = TextFieldAutoSize.CENTER;
}
tField.text = text;
s.addChild(tField);
return tField;

}

One field that won’t be created, destroyed, and then created again during the game is
the scoreField. This field is created once and placed at the bottom of the screen. Then,
we’ll use showGameScore to update the text in the field:
// updates the score
public function showGameScore() {

scoreField.text = "Number of Questions: "+numQuestionsAsked+
" Number Correct: "+numCorrect;

}

In the same way that createText enables us to create different types of text fields with
one function, showGameButton allows us to create different buttons. It takes buttonLabel
as a parameter and sets the text of the label inside the button to match. Then, it places
the button on the screen.

Chapter 10: Questions and Answers: Trivia and Quiz Games358

ptg

The gameButton variable is already a class property, so it will be available for
removeChild later on. We’ll add an event listener to this button so that it calls
pressGameButton when pressed. This will be used to advance the game:
// ask players if they are ready for next question
public function showGameButton(buttonLabel:String) {

gameButton = new GameButton();
gameButton.label.text = buttonLabel;
gameButton.x = 220;
gameButton.y = 300;
gameSprite.addChild(gameButton);
gameButton.addEventListener(MouseEvent.CLICK,pressedGameButton);

}

NOTE
With top-down programming, you want to test each bit of code as you write it.
Unfortunately, the preceding code sample generates an error because
pressedGameButton does not yet exist. At this point, I usually create a dummy
pressedGameButton function that contains no code. That way I can test the placement
of the button first, before needing to program what happens when the player clicks
the button.

Moving the Game Forward
When the player clicks a button, the game should move forward one step. Most of the
time, this means presenting the new question. However, if there are no more questions,
the game ends.

First, we’ll remove the previous question. If this is the first question, questionSprite has
not yet been created. So, we’ll check for the existence of questionSprite and only
remove it if it is there:
// player is ready
public function pressedGameButton(event:MouseEvent) {

// clean up question
if (questionSprite != null) {

gameSprite.removeChild(questionSprite);
}

Other things must be removed, too. The message and button left over from the pause
before or between questions is removed:

// remove button and message
gameSprite.removeChild(gameButton);
gameSprite.removeChild(messageField);

Trivia Quiz 359

ptg

Now we must determine whether all the questions have been exhausted. If so, jump to
the gameover frame at this point. The screen is already blank, from having the previous
question, message, and button removed.

If this is not the end, call askQuestion to display the next question:
// ask the next question
if (questionNum >= dataXML.child("*").length()) {

gotoAndStop("gameover");
} else {

askQuestion();
}

}

Displaying the Questions and Answers
The askQuestion function takes the next question from the quiz data and displays it. It
puts everything it creates into the questionSprite sprite, which makes it easy to dispose
of later on. Figure 10.3 shows the screen after a question has been displayed.

Chapter 10: Questions and Answers: Trivia and Quiz Games360

Figure 10.3
The question and
four answers are
displayed in the
questionSprite,
which covers most
of the middle of
the screen.

// set up the question
public function askQuestion() {

// prepare new question sprite
questionSprite = new Sprite();
gameSprite.addChild(questionSprite);

The question itself will appear in a single field near the top of the screen:
// create text field for question
var question:String = dataXML.item[questionNum].question;
questionField = createText(question,questionFormat,questionSprite,0,60,550);

ptg

Before we place the answers, we need to shuffle them. The first answer in the original
data is the correct one, so we’ll store a copy of it in correctAnswer. Then, we’ll call
shuffleAnswers to get an array of all the answers, but in a random order:

// create sprite for answers, get correct answer, and shuffle all
correctAnswer = dataXML.item[questionNum].answers.answer[0];
answers = shuffleAnswers(dataXML.item[questionNum].answers);

The answers are in a subsprite of questionSprite called answerSprites. Both a
TextField and a Circle are created for each answer. The Circle objects are all assigned
different letters, from A to D. They are both placed at the same location, but the Circle
has been designed to appear to the left of its location, whereas the text will appear to
the right.

Both the text and Circle will be bundled together in a single new sprite, and this sprite
will get a CLICK listener assigned to it so that it can react like a button:

// put each answer into a new sprite with a circle icon
answerSprites = new Sprite();
for(var i:int=0;i<answers.length;i++) {

var answer:String = answers[i];
var answerSprite:Sprite = new Sprite();
var letter:String = String.fromCharCode(65+i); // A-D
var answerField:TextField =

createText(answer,answerFormat,answerSprite,0,0,450);
var circle:Circle = new Circle(); // from Library
circle.letter.text = letter;
answerSprite.x = 100;
answerSprite.y = 150+i*50;
answerSprite.addChild(circle);
answerSprite.addEventListener(MouseEvent.CLICK,clickAnswer);
answerSprite.buttonMode = true;
answerSprites.addChild(answerSprite);

}
questionSprite.addChild(answerSprites);

}

NOTE
To convert from a number to a letter, String.fromCharCode(65+i) is used. It will get
character 65 for A, character 66 for B, and so on.

The shuffleAnswers function takes an XMLList, which is the data type returned by ask-
ing for dataXML.item[questionNum].answers. It loops, removing one random item from
the list at a time and placing it in an array. It then returns this randomly sorted array
of answers:

Trivia Quiz 361

ptg

// take all the answers and shuffle them into an array
public function shuffleAnswers(answers:XMLList) {

var shuffledAnswers:Array = new Array();
while (answers.child("*").length() > 0) {

var r:int = Math.floor(Math.random()*answers.child("*").length());
shuffledAnswers.push(answers.answer[r]);
delete answers.answer[r];

}
return shuffledAnswers;

}

Judging the Answers
All the functions so far have just been setting up the game. Now, finally, the player is
presented with the question, as shown previously in Figure 10.3.

When the player clicks any one of the four answers, clickAnswer is called. The first
thing this function does is to get the text of the selected answer. The TextField is the
first child of the currentTarget, so the value of the text property if grabbed and placed
into selectedAnswer.

Then, this is compared with the correctAnswer that we stored when the question was
displayed. If the player got it right, numCorrect is incremented. A new text message is
displayed in either case:
// player selects an answer
public function clickAnswer(event:MouseEvent) {

// get selected answer text, and compare
var selectedAnswer = event.currentTarget.getChildAt(0).text;
if (selectedAnswer == correctAnswer) {

numCorrect++;
messageField = createText("You got it!",

questionFormat,gameSprite,0,140,550);
} else {

messageField = createText("Incorrect! The correct answer was:",
questionFormat,gameSprite,0,140,550);

}
finishQuestion();

}

Then all the answers are examined. The function finishQuestion loops through each
sprite. The correct one is moved to a y position that places it in the middle. All event
listeners are removed, too. The others are turned invisible. Figure 10.4 shows how the
screen looks now.

Chapter 10: Questions and Answers: Trivia and Quiz Games362

ptg

public function finishQuestion() {
// remove all but the correct answer
for(var i:int=0;i<4;i++) {

answerSprites.getChildAt(i).removeEventListener(MouseEvent.CLICK,clickAnswer);
if (answers[i] != correctAnswer) {

answerSprites.getChildAt(i).visible = false;
} else {

answerSprites.getChildAt(i).y = 200;
}

}
}

The score also needs to be updated, as well as the questionNum pointer. Finally, a new
button is created with the label Continue. You can see it in Figure 10.4, too:

// next question
questionNum++;
numQuestionsAsked++;
showGameScore();
showGameButton("Continue");

}

The button created by clickAnswer is the link back to the next question. When the
player clicks it, pressGameButton is called, which triggers the next question, or the
gameover screen.

Ending the Game
The gameover frame has a Play Again button that will jump the player back to the
game. But first, it needs to call cleanUp to remove the remnants of the game:

Trivia Quiz 363

Figure 10.4
The correct answer
is moved to the
middle and a mes-
sage displayed.

ptg

// clean up sprites
public function cleanUp() {

removeChild(gameSprite);
gameSprite = null;
questionSprite = null;
answerSprites = null;
dataXML = null;

}

Now the game is ready to be started all over again.

This simple quiz game is good enough for special interest websites or products that
need something very basic. For a full-featured trivia game, however, we need to add a
lot more.

Deluxe Trivia Quiz
Source Files

http://flashgameu.com

A3GPU210_TriviaGameDeluxe.zip

To improve upon what we already have, we’ll add some features to make the game
more exciting, challenging, and fun.

First, the player should have a time limit for answering questions. Most game shows and
quizzes do this.

Second, we’ll add a hint button to the quiz so that the player can get a little extra help.
There are two types of hints, and we’ll look at adding them both.

Next, we’ll make the game more informative by placing a piece of extra information
after every question. This will make the game more educational. The information will
expand upon what the player just learned by answering the question.

Finally, we’ll revamp the scoring system. This must take into account the time it takes
to answer a question and whether the player requested a hint.

As an extra bonus, we’ll make the quiz read in a large number of questions, but pick ten
at random to use. This way the quiz differs each time it is played.

Adding a Time Limit
To add a time limit to the game, we need a visual representation of the time the player
has to answer a question. We can make this a separate movie clip object. This Clock
object can be any device for telling time: a clock face, some text, or something else.

Chapter 10: Questions and Answers: Trivia and Quiz Games364

http://flashgameu.com

ptg

For this example, I’ve set up a 26-frame movie clip. All frames contain 25 circles.
Starting with frame 2, one of the circles is filled in with a solid shape. So on the first
frame, all 25 circles are empty. On the 26th frame, all are filled. Figure 10.5 shows this
Clock movie clip.

Deluxe Trivia Quiz 365

Figure 10.5
The 15th frame of
the Clock movie
clip shows 14 filled-
in circles.

We’ll use a Timer to count the seconds. We need to add that to the import statements:
import flash.utils.Timer;

Next, we add a Clock to the sprites being used:
private var clock:Clock;

And a Timer:
private var questionTimer:Timer;

In the askQuestion function, we need to add the Clock and start the Timer:
// set up a new clock
clock = new Clock();
clock.x = 27;
clock.y = 137.5;
questionSprite.addChild(clock);
questionTimer = new Timer(1000,25);
questionTimer.addEventListener(TimerEvent.TIMER,updateClock);
questionTimer.start();

ptg

The Clock will be positioned just under the question on the screen. In fact, we need to
expand the height of the game a bit and move the elements down some to accommo-
date the Clock and some of the other elements we’ll be adding soon. Figure 10.6 shows
the new layout.

Chapter 10: Questions and Answers: Trivia and Quiz Games366

Figure 10.6
The Clock has been
added, and there is
room for more fea-
tures below.

NOTE
The use of 25 dots as a clock is completely arbitrary. You could make any 26-frame
sequence as a movie clip and use that (a stopwatch or a progress bar, for example).
You don’t even need to use 25 separate elements. You could easily substitute five
changes and spread the frames along the timeline.

Every second, the updateClock function is called. The Clock movie clip moves over one
more frame. When the time is up, a message is displayed and finishQuestion is called
just like it is when the player clicks an answer:
// update the clock
public function updateClock(event:TimerEvent) {

clock.gotoAndStop(event.target.currentCount+1);
if (event.target.currentCount == event.target.repeatCount) {

messageField = createText("Out of time! The correct answer was:",
questionFormat,gameSprite,0,190,550);

finishQuestion();
}

}

Now the player has two ways to get a question wrong: clicking a wrong answer or let-
ting the time expire.

ptg

Adding Hints
You might have noticed that the XML sample files include both a hint and an extra fact
for all questions. We’ll finally make use of one of them now.

To add simple hints to the game, we just include a Hint button next to each question.
When the player clicks it, the button is replaced with the text hint.

Implementing this requires a few new things. First, we’ll add a hintFormat to the class’s
definitions, along with the text variable definitions:
private var hintFormat:TextFormat;

Then, we’ll set this format in the construction function:
hintFormat = new TextFormat("Arial",14,0x330000,true,false,false,null,null,"center");

We’ll also add a hintButton to the list of class’s variables, along with the sprites and
objects definitions:
private var hintButton:GameButton;

In the askQuestion function, we’ll create the new Hint button and position it under the
last answer, as shown in Figure 10.7:
// place the hint button
hintButton = new GameButton();
hintButton.label.text = "Hint";
hintButton.x = 220;
hintButton.y = 390;
gameSprite.addChild(hintButton);
hintButton.addEventListener(MouseEvent.CLICK,pressedHintButton);

Deluxe Trivia Quiz 367

Figure 10.7
The Hint button
appears near the
bottom.

ptg

When the player clicks the button, it is removed. In its place will be a new text field, set
to the small text format of hintFormat:
// player wants a hint
public function pressedHintButton(event:MouseEvent) {

// remove button
gameSprite.removeChild(hintButton);
hintButton = null;

// show hint
var hint:String = dataXML.item[questionNum].hint;
var hintField:TextField = createText(hint,hintFormat,questionSprite,0,390,550);

}

We also want to use the removeChild statement inside the finishQuestion function,
checking first that the hintButton exists in case it was removed when the player
clicked it:
//remove hint button
if (hintButton != null) {

gameSprite.removeChild(hintButton);
}

This prevents the player from clicking the button after the question has already been
answered.

That’s all that we need to do to show the hint. Because the hintField is part of the
questionSprite, it gets cleaned up when we remove that sprite when the player has fin-
ished. Figure 10.8 shows how the hint appears after the player clicks the button.

Chapter 10: Questions and Answers: Trivia and Quiz Games368

Figure 10.8
The hint appears in
place of the button.

ptg

NOTE
What makes a good hint? Writing hints can be harder than writing the question and
the answers. You don’t want to give away the answer, but at the same time you want
to help the player. Often the best way to go is to give a hint that points to the answer,
but in a different context. For instance, if the question is about state capitals and the
answer is Carson City, a hint might be “Also the name of a long-time host of the
Tonight Show.”

Adding a Factoid
Adding an extra fact, sometimes called a factoid, to the end of a question is relatively
simple. It is similar to the hint functionality, but a factoid will automatically show up
when the question has been answered.

No new variables are need for this. In fact, all that is needed is for a text field to be cre-
ated and populated when the question is finished. This code is added to
finishQuestion:
// display factoid
var fact:String = dataXML.item[questionNum].fact;
var factField:TextField = createText(fact,hintFormat,questionSprite,0,340,550);

Because the new TextField is part of questionSprite, it is disposed of at the same
time. We are also using the hintFormat instead of creating a separate format for the
factoid. Figure 10.9 shows the result.

Deluxe Trivia Quiz 369

Figure 10.9
The factoid displays
when the player
has answered the
question.

ptg

When deciding on the location of the factoid, I took care to make sure the hint and the
factoid can coexist. If the player chooses to see the hint, it will remain on screen after
the player answers the question, and is displayed right below the factoid.

Adding Complex Scoring
The problem with the hint function, as well as with the clock, is that the player gets
very little penalty when using the hint, or letting the time run long.

What makes the game more challenging is to have a score penalty for using the hint. In
addition, we can have the total points scored dependent on how fast the player answers
a question.

To make these changes, let’s introduce two new variables. They can be placed any-
where in the variable definitions, though they fit best along with the existing game state
variable definitions. These will keep track of the number of points the current question
is worth and the total number of points the player has scored in the game so far:
private var questionPoints:int;
private var gameScore:int;

In the startTriviaGame function, we’ll initialize the gameScore to 0, just before calling
showGameScore:
gameScore = 0;

The showGameScore function will be replaced by a new version. This will show the num-
ber of points the question is worth and the player’s current score:
public function showGameScore() {

if (questionPoints != 0) {
scoreField.text =

"Potential Points: "+questionPoints+"\t Score: "+gameScore;
} else {

scoreField.text =
"Potential Points: ---\t Score: "+gameScore;

}
}

NOTE
The \t in the value for scoreField.text represents a tab character. By placing a tab
between the two parts of the field, we make it possible for the text to remain in the
same general space, even while the length of the numbers change. It is not a perfect
solution, but is much simpler than creating two separate fields in this case. You might
want to have two separate fields if you need more control over the placement of
these numbers.

Figure 10.10 shows the new way the score is displayed at the bottom of the screen.

Chapter 10: Questions and Answers: Trivia and Quiz Games370

ptg

With the showGameScore function now working to update the potential points as well as
the total score, we need to call it more often. Every time the questionScore changes,
we need to call showGameScore to let the player know the new value.

If the questionScore is 0, we’ll display --- rather than 0. This will make it clearer that
the potential points don’t mean anything between questions.

In askQuestion, we’ll set potential score for the question to 1,000:
// start question points at max
questionPoints = 1000;
showGameScore();

)

Then, for every second that goes by, we’ll decrease the score. This happens in the
updateClock function. Each time a new circle is filled in, 25 points are removed from
the potential score:
// reduce points
questionPoints -= 25;
showGameScore();

Also, the potential points decrease when player requests a hint. That will cost them 300
points:
// penalty
questionPoints -= 300;
showGameScore();

Deluxe Trivia Quiz 371

Figure 10.10
The number of
questions asked and
number correct has
been replaced with
the number of
potential points for
this question and
the player’s score.

ptg

Of course, the only way the user gets any points is by guessing the right answer. So,
this will be added in the appropriate place in clickAnswer:
gameScore += questionPoints;

No need to call showGameScore here because it will be called immediately after in the
finishQuestion function. In fact, here’s where we’ll be setting questionPoints to 0, too:
questionPoints = 0;
showGameScore();

You can also opt to keep the original score text field at the bottom and display the
potential points and score in a separate field. Then, players can see all the statistics on
how they are doing.

The movies TriviaGameDeluxe.fla and TriviaGameDeluxe.as leave in the
numCorrect and numQuestionsAsked for this purpose, even though they don’t use them.

Randomizing the Questions
You may or may not want your trivia quiz game to present the same questions each
time someone plays. It depends on how you are using the game.

If you want to present different questions each time, and your game is a web-based
game, it is ideal to have a server-based application that creates a random XML docu-
ment of trivia questions from a large database.

However, if your needs are simpler, but you still want a number of random questions
chosen from a relatively small total number of questions, there is a way to do it com-
pletely within ActionScript.

After the XML document is read in, this raw data can be processed into a smaller XML
document with a set number of random questions.

The new beginning of the xmlLoaded function would look like this:
public function xmlLoaded(event:Event) {

var tempXML:XML = XML(event.target.data);
dataXML = selectQuestions(tempXML,10);

The selectQuestions function takes the complete data set, plus a number of questions
to return. This function picks random item nodes from the original XML document and
creates a new XML object:
// select a number of random questions
public function selectQuestions(allXML:XML, numToChoose:int):XML {

// create a new XML object to hold the questions
var chosenXML:XML = <trivia></trivia>;

// loop until we have enough

Chapter 10: Questions and Answers: Trivia and Quiz Games372

ptg

while(chosenXML.child("*").length() < numToChoose) {

// pick a random question and move it over
var r:int = Math.floor(Math.random()*allXML.child("*").length());
chosenXML.appendChild(allXML.item[r].copy());

// don't use it again
delete allXML.item[r];

}

// ret
return chosenXML;

}

This random selection and shuffle of questions is very handy for creating a quick solu-
tion. However, if you have more than 100 questions, for example, it is important that
you don’t require the movie to read in such a large XML document each time. I recom-
mend a server-side solution. If you don’t have server-side programming experience, you
probably want to team up with, or hire someone, who does.

Picture Quiz
Source Files

http://flashgameu.com

A3GPU210_PictureTriviaGame.zip

Not all question and answer games work well with just text. Sometimes a picture repre-
sents an idea better. For instance, if you want to test someone’s geometry knowledge,
text questions and answers are not always going to be able to convey the idea you want
to test.

Converting our simple trivia game engine to something that uses images is actually not
that hard. We just need to rearrange the screen a bit, and then allow for the loading of
some external image files. The main part of the quiz engine can remain the same.

Better Answer Arrangement
Before we can load images, we need a better arrangement for the answers on the
screen. Figure 10.11 shows the answers in a 2x2 formation, rather than four lines.

This provides a better space for images of approximately 250 pixels wide by 100 pixels
high, at most. Probably best to stick with 200 by 80 so that the loaded images don’t
intrude on the other buttons.

Picture Quiz 373

http://flashgameu.com

ptg

Getting this arrangement is just a matter of a change to the middle of askQuestion. The
variables xpos and ypos keep track of the current position and start at 0 and 0. Then, 1
is added to xpos to move over to the right. After that, xpos is set back to 0, and ypos is
increased. This places the four answers at positions 0,0, 1,0, 0,1, and 1,1. This corre-
sponds to screen locations 100,150, 350,150, 100,250, and 350,250:

NOTE
We’ll be making more changes to this section of code in a bit, so the following code
will not match the final PictureTriviaGame.as yet, in case you are following along.

// put each answer into a new sprite with a circle icon
answerSprites = new Sprite();
var xpos:int = 0;
var ypos:int = 0;
for(var i:int=0;i<answers.length;i++) {

var answer:String = answers[i];
var answerSprite:Sprite = new Sprite();
var letter:String = String.fromCharCode(65+i); // A-D
var answerField:TextField = createText(answer,answerFormat,answerSprite,0,0,200);
var circle:Circle = new Circle(); // from Library
circle.letter.text = letter;
answerSprite.x = 100+xpos*250;
answerSprite.y = 150+ypos*100;
xpos++
if (xpos > 1) {

xpos = 0;
ypos += 1;

}

Chapter 10: Questions and Answers: Trivia and Quiz Games374

Figure 10.11
The answers are
now stacked in
two columns and
two rows.

ptg

answerSprite.addChild(circle);
answerSprite.addEventListener(MouseEvent.CLICK,clickAnswer); // make it a button
answerSprites.addChild(answerSprite);

}

This is already a useful modification because it presents the answers is a more interest-
ing way than just four straight down.

Recognizing Two Types of Answers
The goal here is not to create a quiz that only takes images as answers, but one that
allows you to mix up text and images. So, we need to be able to specify in the XML file
what type an answer is. We can do this by adding an attribute to the answer in the XML:
<item>

<question type="text">Which one is an equilateral triangle?</question>
<answers>

<answer type="file">equilateral.swf</answer>
<answer type="file">right.swf</answer>
<answer type="file">isosceles.swf</answer>
<answer type="file">scalene.swf</answer>

</answers>
</item>

To determine whether an answer should be displayed as text, or an external file loaded,
we just look at the type property. Next, we’ll modify our code to do this.

Creating Loader Objects
In shuffleAnswers, we build a randomly sorted array of answers from the ones in the
XML object. The text of these answers is stored in an array. However, now we need to
store both the text and the type of these answers. So, the line where we add a new
answer to the array changes to this:
shuffledAnswers.push({type: answers.answer[r].@type, value: answers.answer[r]});

Now, when we create each answer, we need to determine whether the answer is text or
an image. If it is an image, we’ll create a Loader object. This is like a movie clip taken
from the library, except that you use a URLRequest and the load command to retrieve
the movie clip contents from an external file:
var answerSprite:Sprite = new Sprite();
if (answers[i].type == "text") {

var answerField:TextField =
createText(answers[i].value,answerFormat,answerSprite,0,0,200);

} else {
var answerLoader:Loader = new Loader();
var answerRequest:URLRequest = new URLRequest("triviaimages/"+answers[i].value);

Picture Quiz 375

ptg

answerLoader.load(answerRequest);
answerSprite.addChild(answerLoader);

}

The code assumes that all the images are inside a folder named triviaimages.

Loader objects can act autonomously. After you set them into action with the load
command, they get the file from the server and appear at their designated position
when they are ready. You don’t need to track them or do anything when the loading
is complete.

NOTE
If you are combining this example with the Clock function of the previous movie, you’ll
want to do some extra work. Is it fair for the clock to be counting down if some of the
answers have not yet appeared? So, you want to listen for the Event.COMPLETE for
each Loader and only start the clock after all the answers have displayed.

Figure 10.12 shows the quiz with four external movies loaded into the answers.

Chapter 10: Questions and Answers: Trivia and Quiz Games376

Figure 10.12
External movies
have replaced text
in each answer.

Determining the Right Answer
We previously relied on the text property of the answer field to determine whether the
player got the answer right. We can’t do that anymore because the Loader object movie
clip does not have a text property like a TextField does. So, instead, we’ll take advan-
tage of the fact that the second object in the answerSprite is the dynamically created
Circle. We can attach an answer property to that and store the answer there:
circle.answer = answers[i].value;

ptg

Then, in the clickAnswer function, we’ll look at this new answer property to determine
whether the player clicked the right sprite:
var selectedAnswer = event.currentTarget.getChildAt(1).answer;

Note that the Circle is child number 1 in the answerSprite. Previously, we were look-
ing at child number 0, which was the TextField.

Another change that is needed is to properly set the position of the correct answer
when the player has made his or her choice. Previously, the answers were all in a sin-
gle-file column, with the same x value. So when we wanted to center the correct
answer, we just set the y value of the correct answerSprite. But now that the answer
can be on the left or the right, we want to set the x value, too. Here is the new code
for the finishQuestion function:
answerSprites.getChildAt(i).x = 100;
answerSprites.getChildAt(i).y = 200;

Expanding the Click Area
One last item before we are done with the answers. If the answer is text, players can
click either the Circle or the TextField to register their answer. However, with loaded
movies as answers, they may not have much to click on. In Figure 10.12, the answers
are just some narrow lines that make up a triangle.

So to click the answer, players must either click the Circle or click some part of the
graphic. However, they should be able to click any reasonable part of the answer.

A quick way to fix this is to place a solid rectangle inside of each answer sprite. They
can be done by just drawing with a solid color, but a 0 setting for the alpha channel to
make it invisible:
// set a larger click area
answerSprite.graphics.beginFill(0xFFFFFF,0);
answerSprite.graphics.drawRect(-50, 0, 200, 80);

Figure 10.13 shows the answer sprites with a graphic behind each one. Instead of an
alpha value of 0, I’ve change the alpha to .5 so that you can see the rectangle.

Picture Quiz 377

ptg

Now players can click in the general area of each answer.

Images for Questions
In addition to using images in the answers, you might want to use images for the ques-
tion itself. We’ll do this in the same way, by using a type attribute in the XML:
<item>

<question type="file">italy.swf</question>
<answers>

<answer type="text">Italy</answer>
<answer type="text">France</answer>
<answer type="text">Greece</answer>
<answer type="text">Fenwick</answer>

</answers>
</item>

Adding this to our ActionScript code is easier this time because the question is not an
active element. We just need to use a Loader object rather than a TextField. Here is
the change to askQuestion:
//create text field for question
var question:String = dataXML.item[questionNum].question;
if (dataXML.item[questionNum].question.@type == "text") {

questionField = createText(question,questionFormat,questionSprite,0,60,550);
} else {

var questionLoader:Loader = new Loader();
var questionRequest:URLRequest = new URLRequest("triviaimages/"+question);
questionLoader.load(questionRequest);
questionLoader.y = 50;
questionSprite.addChild(questionLoader);

}

Chapter 10: Questions and Answers: Trivia and Quiz Games378

Figure 10.13
A rectangle has
been drawn behind
each answer.

ptg

Figure 10.14 shows a question that uses an external image as a question and four
text answers. You could, of course, have a question and all four answers that are
external files.

Picture Quiz 379

Figure 10.14
The question is an
external Flash
movie, but the four
answers are just
text.

Figure 10.14 also demonstrates how using external files for questions and answers
doesn’t mean they have to be drawings or pictures. They can also include text. This
could come in handy for a math quiz that needs to use complex notation such as frac-
tions, exponentials, or symbols.

Modifying the Game
Trivia games are only as good as the questions and answers in them, no matter how
well designed the program and interface are. If you plan on making a game for enter-
tainment, you need to have questions that are engaging and answers that are as well. If
you are making a game for educational purposes, you need to make sure the questions
and answers are clear and fair.

You can modify this game to have fewer or more answers relatively easy. If you want,
you can have just two answers, such as True and False. Rarely are more than four
answers seen, although you sometimes see “All of the above” or “None of the above.”
No special programming is needed for these, except possibly an exception to keep
these as the fifth/sixth answer in the list.

Beyond the questions and answers and how they are displayed, one modification is to
have a game metaphor. This would be a visual representation of how a player is doing
in the game. It can also modify how the game plays.

For instance, the player can have a character that is climbing a rope. For every answer
they get right, the character moves up the rope. When the player gets one question

ptg

wrong, the character falls down to the bottom. The object is to get to the top by cor-
rectly answering a number of questions consecutively.

Game metaphors can be used to tie the game closer to the website or product it’s part
of. For instance, a wildlife conservation site could have a trivia game with questions
about animals.

Chapter 10: Questions and Answers: Trivia and Quiz Games380

