il ;“!*‘\ i

i | e h i
; i[llll‘g@glllllig

[f =

Creating a Top-Down Driving Game

Building a Flash Racing Game

414 Chapter 12: Game Worlds: Driving and Racing Games

In the preceding chapter, you saw how it was possible to create a small world inside an
ActionScript game. This type of platform game creates a side view that is usually used
for indoor adventures and quests.

Another type of game world can be done with a top-down view. This can fit almost any
scenario and theme. There are quite a few top-down games where the player drives a
vehicle around a town or other outdoor location.

In this chapter, we look at a top-down driving game and a straightforward racing game.
Both types of games have some things in common.

Creating a Top-Down Driving Game

Let’s create a simple top-down driving game. This game features a detailed map, a
car, objects to collect, and a complex game logic involving a place to deposit the
objects collected.

Source Files
http://flashgameu.com
A3GPU212_TopDownGame.zip

Creating a Top-Down World

Our example game for this chapter features a college campus. There is a three-block by
three-block area and various buildings coloring in the spaces between the streets. Figure
12.1 shows the campus.

Figure 12.1
The entire game
world is about
2,400 pixels wide
and 2,400 high.

http://flashgameu.com

Creating a Top-Down Driving Game 415

If you look closely at the gate near the bottom of the map, you see a small car. This is
the player’s car, and she can “drive” around the map using it.

Because the map is so big, the player can’t see more than a small section of it at a
time. The map is 2,400 pixels square, and the screen is 550x400.

As the player drives, the map repositions itself with the location of the car at the exact
center of the stage.

Figure 12.2 shows the screen when the player starts. You can see the gate at the bot-
tom and a bit of the parking lot above it. At the bottom is a semitransparent strip with
score elements in it.

Figure 12.2
Only a small
550x400 area of
the map can be
seen at any
given time.

Left: 100 Score: 0 Time: 0:00

The map is located in a single movie clip named GameMap. Inside it, the nine building
groups each has its own movie clip for organizational purposes. The streets are made
up of straight pieces and three different types of corners. The outer fence is made up of
a few different pieces, too.

All these graphic elements are just for decoration. They aren’t actually important to the
game code. This is great news for artists because it means they can have free reign on
creating an artistic backdrop for the game.

The car can move around the screen anywhere with only a few simple restrictions.

First, the car is restricted to the area inside the fence. This is defined by minimum and
maximum x and y values.

Second, the car is restricted from entering the area of certain other movies clips. We
call these Blocks. If the car collides with one of these Blocks, it stops at the edge.

416 Chapter 12: Game Worlds: Driving and Racing Games

/4,,: s NOTE

The use of the term block has three meanings. Most important, it blocks the car from
entering an area. But, it also represents city blocks in this map. In addition, it also
means rectangular in shape.

The nine Blocks are placed over the nine city blocks in the map. Figure 12.3 shows the
locations of these with thick borders.

Figure 12.3
The nine Block

S —
movie clips are
shown with thick
outlines.

S

The object of the game is to collect trash around campus and deposit it in recycling
bins. There are three recycling dumpsters placed in three of the corners of the campus.

There are three different types of trash, one for each dumpster: cans, paper, and bottles.

Instead of placing the trash items in the map by hand, we have our code do it. It places
100 different pieces of trash randomly on campus. We need to make sure they are not
on Blocks; otherwise, the car cannot get to them.

The challenge is to collect all the trash and deposit each type into its own bin. However,
the car can only hold ten different pieces of trash at a time. Before players can pick up
any more, they must visit a dumpster and deposit some trash.

The game gets challenging as players must decide which pieces of trash to pick up
based on which bin they are heading for.

Creating a Top-Down Driving Game 417

Game Design

It is worth taking a look at all of the game inputs, objects, and mechanisms before we
start programming. This helps clarify what we need to do.

Car Control

The car is controlled by the arrow keys. In fact, only three of the four arrow keys are
needed. Figure 12.4 shows the car movie clip.

Figure 12.4
The car movie

clip is pointed to
the right, so 0
rotation matches
the direction that
Math.cos and
Math.sin represent.

k]
%
®
e
(=]
o,
T
by
|
2
£
&
o
&
»
2
a9
a
-
-
&
-
-
=
n

We’re not creating a simulation here, so things such as acceleration, braking, and
reversing can be ignored so long as the player doesn’t need them. In this case, being
able to steer left and right and move forward is fine for getting around.

We use the left- and right-arrow keys to directly change the rotation property of the
car. Then, we use the Math.cos and Math.sin values of the rotation to determine for-
ward movement. This is similar to how we used arrow keys and trigonometry in the
space rocks game from Chapter 7, “Direction and Movement: Air Raid II, Space Rocks,
and Balloon Pop.”

Car Boundaries

The car is restricted to the streets. To be more precise, the car cannot leave the map,
and it cannot run over any of the Block movie clips. The Block movie clip can be seen
in Figure 12.5.

418 Chapter 12: Game Worlds: Driving and Racing Games

Figure 12.5
The Block is never
seen except by us
as we design the
level. A thin red
border and a
semitransparent
fill helps us

place them.

Ll
*
®
-
=
o,
T
N
=1
7
£
&
2
£,
g
o
Q
a
&
L
&
-
-
=
n
%
'l

To do this, we compare the rectangle of the car to the Block rectangles. We get a list of
them when the game first starts. If the car’s rectangle and any one of the Blocks inter-
sect, we push the car back to the point where it is just outside of the Block.

This is similar to how the paddle ball game worked in Chapter 5, “Game Animation:
Shooting and Bouncing Games.” However, instead of bouncing the car off the Block,
we set it perfectly so it is just outside of the Block.

Trash

The trash is actually a single Trashobject movie clip with three frames. We place them
randomly on the map, making sure that none are placed on the Blocks.

When one is placed, it is randomly set to frame 1, 2, or 3, representing one of the three
types of trash: cans, paper, or bottles. Figure 12.6 shows the Trashobject movie clip.

Figure 12.6

The Trashobject
movie clip has three
different frames,
each with a
different type of
trash on them.

Creating a Top-Down Driving Game 419

As the car moves around, we look for the distance between each Trashobject and the
car to be close enough so that the car picks it up.

We remove these from the screen and keep track of how much of each type of trash
the player has. We limit that to 10 items at a time and indicate to the player when they
are full.

Then, when the player gets close to a dumpster, we zero out one of the kinds of items
in the player’s collection. A smart player will fill up on only one type of trash, and then
dump all 10 of those items at the proper dumpster.

Game Score and Clock

The score indicators, shown at the bottom of Figure 12.7, are more important in this
game than in others we have made so far. The player must pay careful attention to them.

Figure 12.7

The score indicators
are at the bottom of
the screen with a
semitransparent
box under them.

Left: 95 Score: Time: 0:17

The first three indicators are the number of trash items the player has. Because players
can only have 10 items before going to a dumpster, they want to get mostly one type
of item. And, they want to pay attention to when they are getting close to full.

We have all three numbers turn red when the car is full of trash. We also use sound to
indicate this. There is a pickup sound when the player drives near a piece of trash. If
the car is full, however, they get a different sound instead, and the trash remains on
the street.

The next two indicators show the number of trash items left to find, the number found,
and the time. The time is the key value here. Players always find all 100 pieces of
trash, unless they quit early. The time is the score. Playing the game well means finish-
ing in less time.

420

Chapter 12: Game Worlds: Driving and Racing Games

The Class Definition

The code for this game is fairly simple considering all that the game does. The game
starts by examining the world created in the Flash movie, and then checks every frame
for player changes and movement.

The package starts off by importing a wide range of class libraries. We need the usual
suspects, plus flash.geom.* for use of the Point and Rectangle objects and
flash.media.Sound and flash.media.SoundChannel for sound effects:
package {

import flash.display.*;

import flash.events.*;

import flash.text.*;

import flash.geom.*;

import flash.utils.getTimer;

import flash.media.Sound;

import flash.media.SoundChannel;

The game has quite a few constants. The speed and turnSpeed control how the car
reacts to the arrow keys. The carsize determines the boundary rectangle of the car
from its center point:

public class TopDownDrive extends MovieClip {

// constants

static const speed:Number = .3;
static const turnSpeed:Number = .2;
static const carSize:Number = 50;

The mapRect constant defines the boundaries of the map. This is approximately the
location of the fence surrounding the campus:

static const mapRect:Rectangle = new Rectangle(-1150,-1150,2300,2300);

The numTrashObjects constant is the number of pieces of trash created at the start of
the game. We also have the maxCarry to set the number of pieces of trash that the
player can have in the car before they need to empty out at a dumpster:

static const numTrashObjects:uint = 100;
static const maxCarry:uint = 10;

The next two constants set the distance for trash and trashcan collisions. You might
need to adjust this number if you move the trashcans further off the road or change the
carSize constant:

static const pickupDistance:Number = 30;
static const dropDistance:Number = 40;

Creating a Top-Down Driving Game 421

A~ NOTE

-
You don’t want to make pickUpDistance too large because it is important for players
to sneak the car past some pieces of trash if they are only collecting trash of one type.

The variables can be divided into three groups. The first group is a series of arrays that
keeps track of the game objects.

The blocks array contains all the Block objects that prevents the car from leaving the
road. The trashObjects is a list of all the trash items spread randomly around the
map. The trashcans array contains the three trashcans that are the drop-off points for
the trash:

// game objects

private var blocks:Array;

private var trashObjects:Array;

private var trashcans:Array;

The next set of variables all deal with the game state. We start with the usual set of
arrow-key Boolean variables:

/1 game variables
private var arrowLeft, arrowRight, arrowUp, arrowDown:Boolean;

Next, we've got two time values. The first, 1astTime is used to determine the length of
time since the last animation step. The gameStartTime is used to determine how long
the player has been playing:

private var lastTime:int;

private var gameStartTime:int;

The onboard array is a list with one item for each trashcan—so a total of three items.
They all start at O and contain the number of each kind of trash that the player has in
the car:

private var onboard:Array;

The totalTrashObjects variable contains the sum of all three numbers in onboard. We'll
use it for quick and easy reference when deciding whether there is enough room in the
car for more trash:

private var totalTrashObjects:int;

The score is simply the number of trash objects that have been picked up and delivered
to trashcans:

private var score:int;

422

Chapter 12: Game Worlds: Driving and Racing Games

The lastObject variable is used to determine when to play the “can’t get more trash
because the car is full” sound. When players have 10 items already collected, and they
collide with a piece of trash, we play a negative sound, as opposed to the positive
sound they get when they have room for the trash.

Because the trash is not removed from the map, chances are that they will collide with
the piece again immediately and continue to do so until the car moves far enough away
from the trash.

So, we record a reference to the Trash object in lastObject and save it for later refer-
ence. This way we know that a negative sound already played for this object and not to
play it again and again while the car is still near it:

private var lastObject:Object;

The last variables are references to the four sounds stored in the movie’s library. All
these sounds have been set with linkage properties so that they exist as classes available
for our ActionScript to access:

// sounds

var theHornSound:HornSound = new HornSound();

var theGotOneSound:GotOneSound = new GotOneSound();

var theFullSound:FullSound = new FullSound();

var theDumpSound:DumpSou nd = new DumpSound();

The Constructor Function

When the movie reaches frame 2, it calls startTopbDownDrive to begin the game.

This function immediately calls findBlocks and placeTrash to set up the map. We look
at those functions soon:

public function startTopDownDrive() {

// get blocks
findBlocks();

// place trash items
placeTrash();

Because there are only three trashcans and they have been specifically named in the
gamesprite, we place them in the trashcans array in one simple line of code.

NOTE

The gamesprite is the instance on the stage of the GameMap library element. In the
library, it is actually a MovieClip. Because it is only a single frame, however, we call it
gamesprite.

Creating a Top-Down Driving Game 423

/| set trashcans
trashcans = new Array(gamesprite.Trashcant,
gamesprite.Trashcan2, gamesprite.Trashcan3);

Because the Trash objects are created by our code, and the car exists in the gamesprite
before our code runs, the trash is on top of the car. This is apparent after the car is full
and the player is racing past other pieces of trash. You see the trash float over the car
unless we do something about it. By calling setchildIndex with
gamesprite.numChildren-1, we place the car back on top of everything else in the game:

// make sure car is on top
gamesprite.setChildIndex(gamesprite.car,gamesprite.numChildren-1);

/ s NOTE
w

Alternatively, we could have created an empty movie clip in the GameMap movie clip to
hold all the trash items. Then, we could have placed it in a timeline layer just below the
car, but above the street. This is important if we want to have some items, such as a
bridge, remain on top of both the car and the trash.

We need three listeners, one for the ENTER_FRAME event, which runs the entire game.
The other two are for the key presses:
/] add listeners
this.addEventListener (Event.ENTER_FRAME,gameLoop);
stage.addEventListener(KeyboardEvent.KEY_DOWN,keyDownFunction);
stage.addEventListener(KeyboardEvent.KEY_UP,keyUpFunction);

We set up the game state next. The gameStartTime is set to the current time. The
onboard array is set to all zeros, as well as the totalTrashObjects and score:

/] set up game variables

gameStartTime = getTimer();

onboard = new Array(0,0,0);

totalTrashObjects = 0;

score = 0;

We call two utility functions right away to get the game going. The centerMap function
is what places the gamesprite so that the car is at the center of the screen. If we don’t
call that now, we get a flash of how the gamesprite appears in the raw timeline before
the first ENTER_FRAME.

A similar idea is behind calling showScore here, so all the score indicators are set to
their original values before the player can see them:

centerMap();
showScore();

424 Chapter 12: Game Worlds: Driving and Racing Games

Finally, we end by playing a sound using the utility function playSound. I've included a
simple horn honk to signal the player that the game has begun:

playSound(theHornSound);

Finding the Blocks

To find all Block objects in the gamesprite, we need to loop through all the children of
gamesprite and see which ones are Block types by using the is operator.

If they are, we add them to the blocks array. We also set the visible property of each
of the Block objects to false so they don’t appear to the player. This way we can
clearly see them while developing the movie, but don’t need to remember to hide them
or set them to a transparent color before finishing the game:

/] find all Block objects
public function findBlocks() {
blocks = new Array();
for(var i=0;i<gamesprite.numChildren;i++) {
var mc = gamesprite.getChildAt(1i);
if (mc is Block) {
// add to array and make invisible
blocks.push(mc);
mc.visible = false;

Placing the Trash

To place 100 random pieces of trash, we need to loop 100 times, placing 1 piece of
trash each time:

// create random Trash objects
public function placeTrash() {
trashObjects = new Array();
for(var i:int=0;i<numTrashObjects;i++) {

For each placement, we start a second loop. Then, we try different values for the x and
y position of the trash:

/] loop forever
while (true) {

// random location
var x:Number = Math.floor(Math.random()*mapRect.width)+mapRect.x;
var y:Number = Math.floor(Math.random()*mapRect.height)+mapRect.y;

Creating a Top-Down Driving Game 425

After we have a location, we check it against all the Block objects. If the location is on a
Block object, we note it by setting the isonBlock local variable to true:
/| check all blocks to see if it is over any
var isOnBlock:Boolean = false;
for(var j:int=0;j<blocks.length;j++) {
if (blocks[j].hitTestPoint(x+gamesprite.x,y+gamesprite.y)) {
isOnBlock = true;
break;

}

If the location doesn’t intersect with any Block objects, we go ahead and create the new
TrashObject object. Then, we set its location. We also need to choose a random type
for this piece, by setting the movie clip to frame 1, 2, or 3. Figure 12.8 shows the
beginning of a game where three Trashobject movie clips have been placed near the
starting point of the car.

Figure 12.8
Three Trashobject
movie clips have
been randomly
placed near the
car at the start of
the game.

Left: 100 Score: 0 Time: 0:08

NOTE

The TrashObject movie clip has three frames, each with a different graphic. These are
actually movie clips themselves. Their use in TrashObject doesn’t need them to be
separate movie clips, but we want to use the same graphics for the trashcans to indi-
cate which trashcan can take which type of trash. This way, we only have one version
of each graphic in the library.

We add this piece of trash to trashobjects and then break.

This final break exits the while loop and moves on to placing the next piece of trash.
However, if the isonBlock is true, we continue with the while loop by choosing
another location to test:

426 Chapter 12: Game Worlds: Driving and Racing Games

// not over any, so use location

if (!isOnBlock) {
var newObject:TrashObject = new TrashObject();
newObject.x = Xx;
newObject.y = vy;
newObject.gotoAndStop (Math.floor(Math.random()*3)+1);
gamesprite.addChild(newObject);
trashObjects.push(newObject);
break;

/ s NOTE
w

When testing out a placement function such as placeTrash, it is useful to try it with
the number of objects set high. For instance, I tested placeTrash with a
numTrashObjects set to 10,000. This littered trash all over the road, but I can see
clearly that the trash is only on the road and not in places where I didn’t want it.

Keyboard Input

The game includes a set of keyboard input functions similar to the ones we have used in
several games up to this point. Four Boolean values are set according to whether the
four arrow keys are triggered on the keyboard.

The functions even recognize the down arrow, although this version of the game
doesn’t use it:

/] note key presses, set properties
public function keyDownFunction(event:KeyboardEvent) {
if (event.keyCode == 37) {
arrowLeft = true;
} else if (event.keyCode == 39) {
arrowRight = true;
} else if (event.keyCode == 38) {
arrowlp = true;
} else if (event.keyCode == 40) {
arrowDown = true;

}

public function keyUpFunction(event:KeyboardEvent) {
if (event.keyCode == 37) {
arrowLeft = false;
} else if (event.keyCode == 39) {
arrowRight = false;

Creating a Top-Down Driving Game 427

} else if (event.keyCode == 38) {
arrowlp = false;

} else if (event.keyCode == 40) {
arrowDown = false;

}

The Game Loop

The gameLoop function handles car movement. There are actually no other moving
objects in the game. The player moves the car, and everything else remains static inside
the gamesprite.

This is a time-based animation game, so we calculate the time that has passed since the
last frame and move things according to this time value:

public function gameLoop(event:Event) {

// calculate time passed

if (lastTime == Q) lastTime = getTimer();
var timeDiff:int = getTimer()-lastTime;
lastTime += timeDiff;

We check the left and right arrow keys and call rotatecar to handle steering. We pass
in the timeDiff and the direction of the turn:
/] rotate left or right
if (arrowLeft) {
rotateCar(timeDiff,"left");

}
if (arrowRight) {
rotateCar(timeDiff, "right");

}

If the up arrow is pressed, we call moveCar with the timeDiff. Then, we call centerMap
to make sure the gamesprite is positioned correctly with the new location of the car.

The checkCollisions function checks to see whether the player has grabbed any trash
or has gotten close to a trashcan:
// move car
if (arrowUp) {
moveCar (timeDiff);
centerMap();
checkCollisions();

}

Remember that the time is the real score in this game. The player is racing the clock.
So, we need to update the time for the player to know how she is doing:

428

Chapter 12: Game Worlds: Driving and Racing Games

// update time and check for end of game
showTime();

}

Let’s take a look right away at the centerMap function because it is so simple. All it
needs to do is to set the location of the gamesprite to negative versions of the location
of the car inside the gamesprite. For instance, if the car is at location 1000,600 in
gamesprite, setting the location of the gamesprite to —1000,-600 means that the car is
at location 0,0 on the stage.

We don’t want the car at 0,0, which is the upper-left corner. We want it in the center
of the stage, so we add 275,200 to center it.

NOTE

If you want to change the size of the visible area of the stage, say to 640x480, you
also want to change the values here to match the middle of the stage area. So, a
640x480 stage means 320 and 240 as the x and y adjustments place the car at the
middle of the screen.

public function centerMap() {
gamesprite.x = -gamesprite.car.x + 275;
gamesprite.y = -gamesprite.car.y + 200;

Moving the Car

Steering the car is unrealistic in this game; the car is rotated around its center by a few
degrees each frame. In fact, the car can turn without moving forward. Try that in your
Toyota.

If you play, however, you hardly notice. The rotation is time based, so it is the product
of the timeDiff and the turnSpeed constant. The car should turn at the same rate no
matter what the frame rate of the movie:

public function rotateCar(timeDiff:Number, direction:String) {

if (direction == "left") {
gamesprite.car.rotation -= turnSpeed*timeDiff;
} else if (direction == "right") {

gamesprite.car.rotation += turnSpeed*timeDiff;

}
}

Moving the car forward is pretty simple, too, or it can be, if not for the need to detect
and deal with collisions between the Block objects and the edges of the map.

We simplify the collision detection by using simple Rectangle objects and the inter-
sects function. So, the first thing we need is the Rectangle of the car.

Creating a Top-Down Driving Game 429

The car is already a rectangular shape because the car rotates; using the movie clip’s
exact Rectangle is a problem. Instead, we use a made-up Rectangle based on the center
of the car and the carSize. This square area is a good enough approximation of the
area of the car that the player doesn’t notice.

A~ NOTE
-

Keeping the car graphic to a relatively square size, where it is about as long as it is
wide, is important to maintaining the illusion of accurate collisions. Having a car that
is much longer than wide requires us to base our collision distance depending on the
rotation of the car relative to the edge it might be colliding with. And, that is much
more complex.

// move car forward
public function moveCar (timeDiff:Number) {
// calculate current car area
var carRect = new Rectangle(gamesprite.car.x-carSize/2,
gamesprite.car.y-carSize/2, carSize, carSize);

So, now we have the car’s present location in carRect. To calculate the new location of
the car, we convert the rotation of the car to radians, feed those numbers to Math.cos
and Math.sin, and then multiply those values by the speed and timeDiff. This gives us
time-based movement using the speed constant. Then, newCarRect holds the new loca-
tion of the car:

/| calculate new car area

var newCarRect = carRect.clone();

var carAngle:Number = (gamesprite.car.rotation/360)*(2.0*Math.PI);

var dx:Number = Math.cos(carAngle);

var dy:Number = Math.sin(carAngle);

newCarRect.x += dx*speed*timeDiff;

newCarRect.y += dy*speed*timeDiff;

We also need the x and y location that matches the new Rectangle. We add the same
values to x and y to get this new location:

/| calculate new location
var newX:Number = gamesprite.car.x + dx*speed*timeDiff;
var newY:Number = gamesprite.car.y + dy*speed*timeDiff;

Now, it is time to loop through the blocks and see whether the new location intersects
with any of them:

/] loop through blocks and check collisions
for(var i:int=0;i<blocks.length;i++) {

/! get block rectangle, see if there is a collision
var blockRect:Rectangle = blocks[i].getRect(gamesprite);
if (blockRect.intersects(newCarRect)) {

430

Chapter 12: Game Worlds: Driving and Racing Games

If there is a collision, we look at both the horizontal and vertical aspects of the collision
separately.

If the car has passed the left side of a Block, we push the car back to the edge of that
Block. The same idea is used for the right side of the Block. We don’t need to bother to
adjust the Rectangle, just the newX and newY position values. These are used to set the
new location of the car:

// horizontal push-back
if (carRect.right <= blockRect.left) {
newX += blockRect.left - newCarRect.right;
} else if (carRect.left >= blockRect.right) {
newX += blockRect.right - newCarRect.left;

Here is the code that handles the top and bottom sides of the colliding Block:

// vertical push-back

if (carRect.top >= blockRect.bottom) {
newY += blockRect.bottom-newCarRect.top;

} else if (carRect.bottom <= blockRect.top) {
newY += blockRect.top - newCarRect.bottom;

After all the Block objects have been examined for possible collisions, we need to look
at the map boundaries. This is the opposite of the Block objects because we want to
keep the car /nside the boundary Rectangle, rather than outside of it.

So, we examine each of the four sides and push back the newX or newy values to pre-
vent the car from escaping the map:

// check for collisions with sides

if ((newCarRect.right > mapRect.right) && (carRect.right <= mapRect.right)) {
newX += mapRect.right - newCarRect.right;

}

if ((newCarRect.left < mapRect.left) && (carRect.left >= mapRect.left)) {
newX += mapRect.left - newCarRect.left;

if ((newCarRect.top < mapRect.top) && (carRect.top >= mapRect.top)) {
newY += mapRect.top-newCarRect.top;

}

if ((newCarRect.bottom > mapRect.bottom) && (carRect.bottom <= mapRect.bottom)) {
newY += mapRect.bottom - newCarRect.bottom;

Creating a Top-Down Driving Game 431

Now that the car is safely inside the map and outside of any Block, we can set the new
location of the car:

// set new car location
gamesprite.car.x = newX;
gamesprite.car.y = newy;

Checking for Trash and Trashcan Collisions

The checkCollisions function needs to look for two different types of collisions. It starts
by looking at all the trashObjects. It uses the Point.distance function to see whether
the location of the car and the location of the Trashobject are closer than the
pickupDistance constant:

public function checkCollisions() {

// loop through trashcans
for(var i:int=trashObjects.length-1;i>=0;i--) {

/| see if close enough to get trash objects
if (Point.distance(new Point(gamesprite.car.x,gamesprite.car.y),
new Point(trashObjects[i].x, trashObjects[i].y)) < pickupDistance) {

If an item is close enough, we check totalTrashObjects against the maxCarry constant.
If there is room, the item is picked up by setting the right slot in onboard according to
the currentFrame-1 of the Trashobject movie clip. Then, it is removed from gamesprite
and the trashobjects array. We need to update the score and play the GotoOneSound:

/| see if there is room

if (totalTrashObjects < maxCarry) {
/] get trash object
onboard[trashObjects[i].currentFrame-1]++;
gamesprite.removeChild(trashObjects[i]);
trashObjects.splice(i,1);
showScore();
playSound(theGotOneSound);

NOTE

One aspect of our code that can be confusing is the way in which trash item types are
referenced. As frames in the Trashobject movie clip, they are frames 1, 2, and 3. But,
arrays are 0 based; so, in the onboard array, we store trash types 1, 2, and 3 in array
locations 0, 1, and 2. The trashcans are named Trashcani, Trashcan2, and Trashcan3
and correspond to the frame numbers, not the array slots. As long as you keep this in
mind, you can avoid any problems in modifying the code. Having 0-based arrays, but
frame numbers that start at 1, is a constant problem for ActionScript developers.

432 Chapter 12: Game Worlds: Driving and Racing Games

On the other hand, if the player has hit an item, but there is no more room, we play
another sound. We play the sound only if the item is not the lastobject. This prevents
the sound from playing over and over as the player moves across an object. It plays just
once per object hit:
} else if (trashObjects[i] != lastObject) {
playSound(theFullSound);
lastObject = trashObjects[i];

}

The next set of collisions looks at the three trashcans. We use Point.distance here,
too. After a collision is detected, we remove any of that type of trash from the onboard
array. We update the score and play a sound to acknowledge the player’s achievement:

// drop off trash if close to trashcan
for(i=0;i<trashcans.length;i++) {

/| see if close enough
if (Point.distance(new Point(gamesprite.car.x,gamesprite.car.y),
new Point(trashcans[i].x, trashcans[i].y)) < dropDistance) {

// see if player has some of that type of trash
if (onboard[i] > 0) {

/] drop off

score += onboard[i];
onboard[i] = 0;
showScore();
playSound(theDumpSound);

If the score has risen to the point of the numTrashobjects constant, the last piece of
trash has been deposited, and the game is over:
/| see if all trash has been dropped off
if (score >= numTrashObjects) ({
endGame();
break;

Creating a Top-Down Driving Game 433

The Clock

Updating the clock is pretty simple and similar to what we did in the matching game in
Chapter 3, “Basic Game Framework: A Matching Game.” We subtract the current time
from the start time to get the number of milliseconds. Then, we use the utility function
clockTime to convert that to a time format:
/] update the time shown
public function showTime() {
var gameTime:int = getTimer()-gameStartTime;
timeDisplay.text = clockTime(gameTime);

The clockTime function computes the number of seconds and minutes, and then for-
mats it with leading zeros if needed:

/] convert to time format
public function clockTime(ms:int):String {
var seconds:int = Math.floor(ms/1000);
var minutes:int = Math.floor(seconds/60);
seconds -= minutes*60;
var timeString:String = minutes+":"+String(seconds+100).substr(1,2);
return timeString;

The Score Indicators

Showing the score in this game is much more complex than just showing a single num-
ber. We show the three numbers stored in onboard. At the same time we add these
numbers for totalTrashobjects, which are used elsewhere in the game to determine
whether there is more room in the car:

// update the score text elements
public function showScore() {

/| set each trash number, add up total

totalTrashObjects = 0;

for(var i:int=0;i<3;i++) {
this["onboard"+(i+1)].text = String(onboard[i]);
totalTrashObjects += onboard[i];

We also use totalTrashObjects right now to color all three numbers red or white
depending on whether the car is full. This gives us a natural indicator for the players to
see whether they have maxed out the car’s capacity and need to go to a trashcan:
/| set color of all three based on whether full
for(i=0;i<3;it++) {
if (totalTrashObjects >= 10) {

434 Chapter 12: Game Worlds: Driving and Racing Games

this["onboard"+(i+1)].textColor = OxFF0000;
} else {
this["onboard"+(i+1)].textColor = OXFFFFFF;

Then, we show both the score and the number of trash objects still out there for the
player to find:
// set number left and score

numLeft.text = String(trashObjects.length);
scoreDisplay.text = String(score);

Game End

When the game is over, we remove the listeners, but not the gamesprite. That’s
because we didn’t create the gamesprite. It disappears when we use gotoAndStop to go
to the next frame. Because the gamesprite is only on the play frame, it is not shown on
the gameover frame:

// game over, remove listeners

public function endGame() {
blocks = null;
trashObjects = null;
trashcans = null;
this.removeEventListener (Event.ENTER_FRAME,gameLoop);
stage.removeEventListener(KeyboardEvent.KEY_DOWN, keyDownFunction);
stage.removeEventListener(KeyboardEvent.KEY_UP,keyUpFunction);
gotoAndStop("“gameover");

When the gameover frame has been reached, it calls back to showFinalMessage. We
can’t call it earlier because the finalMessage text field is only on the gameover frame
and cannot be accessed until that frame is visible.

We place the final time in this text field:

/| show time on final screen
public function showFinalMessage() {
showTime();
var finalDisplay:String = "";
finalDisplay += "Time: "+timeDisplay.text+"\n";
finalMessage.text = finalDisplay;

One last function we need is the playSound utility function. It simply serves as a central
place for all sound effects to be triggered from:

Building a Flash Racing Game 435

public function playSound(soundObject:0Object) {
var channel:SoundChannel = soundObject.play();

NOTE

An advantage of having a single function where all sound effects are initiated is that
you can quickly and easily build in mute and volume functions. If you placed your
sound code all over the game, you need to modify each one of those places to add a
check for a mute or volume setting.

Modifying the Game

This game can be modified to be almost any free-exploring, item-collecting game. You
can change the background elements with no programming at all. The collision areas,
the Block objects, can be changed by moving and adding new Block movie clips.

You can even make the game last longer by having more pieces of trash appear as time
goes on. You could set a Timer so that a new piece of trash is added every five seconds,
for instance. The Timer could do this for a few minutes before it stops.

You could also add negative items—ones that you want to avoid. These can be things
such as oil slicks or land mines. A military version of this game could have a hospital
vehicle picking up soldiers on a battlefield, but you need to avoid the land mines.

Building a Flash Racing Game

One thing you might be tempted to do while playing the top-down driving game is to
race. For instance, you can see how fast you can make it around the campus.

Although the previous game is a good start, we need to add a few more elements to
make a racing game.

Source Files
http://flashgameu.com
A3GPU212_RacingGame.zip

Racing Game Elements

Even though we are building an “arcade” racing game and not a real racing simulation,
we want to make it realistic enough to make it feel like a real car. This means that the
car shouldn’t lurch into full speed the minute the up arrow is pressed, and it shouldn’t
stop as soon as the up arrow is released.

http://flashgameu.com

436 Chapter 12: Game Worlds: Driving and Racing Games

We add acceleration and deceleration to the game. So, the up arrow adds acceleration
to the speed of the car. And then, the speed of the car is used to determine movement
for each frame.

NOTE

The distinction between an arcade game and a simulation is bigger here than in any
other kind of game we have looked at. A true simulation takes into account physics,
such as the mass of the car, the torque of the engine, and the friction between the tires
and the road, not to mention skidding.

Not only is this beyond the scope of a simple Flash game, but it is usually simplified or
ignored in many high-budget console games. It is important to not let reality get in the
way of fun. Or, let it get in the way of finishing a game on time and on budget.

Likewise, if the down arrow is pressed, there is reverse acceleration. From a standstill,
the down arrow produces a negative speed value, and the car moves backward.

Another aspect of a racing game is that the car should follow a specific path. The
player shouldn’t be able to cut across the track or reverse over the finish line to cross it
again in a few seconds.

To keep track of the player’s path, we use a simple technique called waypoints.
Basically, the player needs to get close to and mark off a list of points around the track.
Only after the player has hit all these points will he be allowed to cross the finish line.

The best part about waypoints is that players don’t even know they are there. We hide
the waypoints and quietly mark them off, without bothering the players about this detail.
All they know is that they have to race fast and honest.

One last feature of this game that adds a little more of a racing feel is the starting
countdown. Instead of the game just starting, there are three seconds where the player
cannot move and a large 3, 2, and 1 display.

Making the Track

The collision detection in the top-down driving game is based on rectangular blocks. It is
fairly easy to detect collisions against straight horizontal or vertical edges.

However, a racetrack includes curves. Detecting collisions against curves, or even short
segments of diagonal walls, is much more difficult.

So, we avoid it altogether in this game.

The track consists of three areas: the road, the sides, and everything else. If the car is
on the road, it moves unimpeded. If it is on the side of the road, it still moves, but with
a constant nagging deceleration that causes the racer to lose time. If the car is off both
the road and the side, the deceleration is severe, and the car needs to turn and limp
back on to the road.

Building a Flash Racing Game 437

Figure 12.9 shows these three areas. The road is in the middle and appears gray in
Flash. Just outside of it is the side, a brown area, which appears as a slightly different
gray in this black and white figure.

Figure 12.9

The track is sur-
rounded by a thicker
“side” element.

The track also includes some nonactive elements, such as the trees you see scattered
around.

NOTE

Although the trees are not referenced in our code and are not even movie clips, just
graphics symbols, they do serve an important role. Without these incidental elements,
it is sometimes hard for the player to notice the movement of the car and gauge

its speed.

The car movie clip is placed on the track in the position where it starts. This happens
to be right on the finish line, which is a separate movie clip.

The dots you see around the track are waypoint objects. You can place only a few
around the track, like we have done, or many more if your track includes more twists
and turns and you need to prevent the player from cheating and cutting across curves.

All these elements are in the Track movie clip, which is the gamesprite referred to in
our code.

438 Chapter 12: Game Worlds: Driving and Racing Games

Sound Effects

This game uses quite a few sounds effects. Three different driving sounds loop as the
player moves the car. Here is a list of all the sounds used in the game:

DriveSound—A sound loop that plays while the car is accelerating and is on the
road. It sounds like a sports car engine.

sideSound—A sound loop that plays while the car is accelerating and on the side
of the road. It sounds like tires moving through dirt.

offroadSound—A sound loop that plays while the car is accelerating and off both
the road and the side of the road. It sounds like a car moving over gravel.

BrakestopSound—A screeching-brake sound to be used when the car crosses the
finish line.

ReadysetSound—A high beep that sounds during the countdown at the start of
the game.

GoSound—A low beep that sounds when the countdown reaches zero.

The game could easily have more sounds, such as an idle sound for when the car is not
accelerating. Also, the BrakestopSound can be replaced with a crowd cheering sound as
an alternative way to end the race.

Constants and Variables

Some parts of this game’s code are the same as the top-down driving game. We focus
on the new code here.

The constants now include acceleration and deceleration constants. They are pretty
small because they are multiplied by the milliseconds that pass by between frames:

public class Racing extends MovieClip {

/] constants

static const maxSpeed:Number = .3;
static const accel:Number = .0002;
static const decel:Number = .0003;
static const turnSpeed:Number = .18;

The game variables include a gameMode, which indicates whether the race has started.
We also have a waypoints array, to hold the Point locations of the Waypoint movie
clips. The speed variable holds the current rate at which the rate is moving, which
changes as the car accelerates and decelerates:

// game variables

private var arrowLeft, arrowRight, arrowUp, arrowDown:Boolean;

private var lastTime:int;

private var gameStartTime:int;

Building a Flash Racing Game 439

private var speed:Number;
private var gameMode:String;
private var waypoints:Array;
private var currentSound:Object;

Here are the initial definitions for all the new sounds. Each one is in the library and has
been set to export for ActionScript use:

/| sounds

static const theBrakestopSound:BrakestopSound = new BrakestopSound();

static const theDriveSound:DriveSound = new DriveSound();

static const theGoSound:GoSound = new GoSound();

static const theOffroadSound:0ffroadSound = new OffroadSound();

static const theReadysetSound:ReadysetSound = new ReadysetSound();

static const theSideSound:SideSound = new SideSound();

private var driveSoundChannel:SoundChannel;

Starting the Game

When this game starts, it doesn’t need to look for Blocks. Instead, it needs to find
waypoint objects. The findWaypoints function does that. We look at it next:

public function startRacing() {

/] get list of waypoints
findWaypoints();

The listeners needed are the same as for the top-down driving game, but the variables
that need to be set at the start of the game now include gameMode, and speed. We also
set the timeDisplay text field to empty because it is blank for the first 3 seconds of the
game, until the race starts:
// add listeners
this.addEventListener (Event.ENTER_FRAME,gameLoop);
stage.addEventListener(KeyboardEvent.KEY_DOWN,keyDownFunction);
stage.addEventListener(KeyboardEvent.KEY_UP,keyUpFunction);

/] set up game variables

speed = 0;

gameMode = "wait";
timeDisplay.text = "";
gameStartTime = getTimer()+3000;
centerMap();

Notice that the gameStartTime has 3 seconds added to it. This is because the game
starts with a 3-second countdown. The car isn’t allowed to move until 3 seconds have
passed and the gameTimer () catches up with the gameStartTime.

440 Chapter 12: Game Worlds: Driving and Racing Games

The findwaypoints function is similar to the findBlocks function in the previous game.
However, this time we only need to know the Point location of each waypoint. After
we record that, the movie clip itself is irrelevant:
// look at all gamesprite children and remember waypoints
public function findWaypoints() {
waypoints = new Array();
for(var i=0;i<gamesprite.numChildren;i++) {
var mc = gamesprite.getChildAt(i);
if (mc is Waypoint) {
// add to array and make invisible
waypoints.push(new Point(mc.x, mc.y));
mc.visible = false;

The Main Game Loop

We skip the keyboard listener functions because they are identical to the top-down
driving game.

The gameLoop, however, is different. We include much more of the game mechanics
right inside the function, instead of delegating it to other functions.

After determining the amount of time that has lapsed since the last time gameLoop ran,
we examine the left and right arrows and turn the car:

public function gameLoop(event:Event) {

/] calculate time passed

if (lastTime == Q) lastTime = getTimer();
var timeDiff:int = getTimer()-lastTime;
lastTime += timeDiff;

// only move car if in race mode
if (gameMode == "race") {
/| rotate left or right
if (arrowLeft) {
gamesprite.car.rotation -= (speed+.1)*turnSpeed*timeDiff;
}
if (arrowRight) {
gamesprite.car.rotation += (speed+.1)*turnSpeed*timeDiff;
I3

Notice three factors impact the amount of the turn: the speed, the turnSpeed constant,
and the timeDiff. In addition, the speed is supplemented by .1. This allows the player
to turn the car slightly when at a standstill, and slightly more when moving slowly.

Building a Flash Racing Game 441

Although not accurate to a driving simulation, this does make the game less frustrating
to play.

/ s NOTE
w

By tying the speed to the amount the car turns, we're allowing the car to turn faster
when it is moving faster. This makes the steering feel a little more realistic and helps
get around the curves.

Also, notice that turning, and the movement to come next, only happens if the
gameMode is set to “race.” This doesn’t occur until the 3-second countdown is over.

The car movement is dependent on the speed. The speed is dependent on the accelera-
tion, which occurs when the player uses the up or down arrows. This next bit of code
takes care of these changes and makes sure that the speed doesn’t get too out of con-
trol by restricting it to maxSpeed:

/| accelerate car
if (arrowUp) {
speed += accel*timeDiff;
if (speed > maxSpeed) speed = maxSpeed;
} else if (arrowDown) {
speed -= accel*timeDiff;
if (speed < -maxSpeed) speed = -maxSpeed;

However, if neither the up or down arrow is being pressed, the car should slowly come
to a halt. We use the decel constant to reduce the speed of the car:

/] no arrow pressed, so slow down
} else if (speed > 0) {

speed -= decel*timeDiff;

if (speed < 0) speed = 0;
} else if (speed < 0) {

speed += decel*timeDiff;

if (speed > 0) speed = 0;

/(5 NOTE
v

You could also easily add a brake to the car. Just include the spacebar along with the
four arrow keys when looking at the keyboard. Then, when the spacebar is pressed,
you can have a more severe slowdown than the decel constant.

We only need to check the car’'s movement if there is a speed value. If the car is stand-
ing perfectly still, we can skip the next part.

442 Chapter 12: Game Worlds: Driving and Racing Games

However, if the car is moving, we need to reposition it, check whether it is on the road
or not, center the map over the car, check to see whether any new Waypoint objects
have been encountered, and check to see whether the car has crossed the finish line:

/] if moving, then move car and check status
if (speed != 0) {

moveCar (timeDiff);

centerMap();

checkWaypoints();

checkFinishLine();

Whether the car moves or not, the clock still needs to be updated:

/] update time and check for end of game
showTime();

Car Movement

The car moves depending on the rotation, speed, and timeDiff. The rotation is con-
verted to radians, and then fed into Math.cos and Math.sin. The original position of the
car is stored in carPos and the change in position in dx and dy:

public function moveCar (timeDiff:Number) {

// get current position
var carPos:Point = new Point(gamesprite.car.x, gamesprite.car.y);

/| calculate change

var carAngle:Number = gamesprite.car.rotation;

var carAngleRadians:Number = (carAngle/360)*(2.0*Math.PI);
var carMove:Number = speed*timeDiff;

var dx:Number = sMath.cos(carAngleRadians)*carMove;

var dy:Number Math.sin(carAngleRadians)*carMove;

While figuring out where the new location of the car should be, we also need to figure
out which sound should be playing. If the car is moving, and it is on the road,
theDriveSound should be playing. We assume that is the case at this point and adjust
the value of newSound as we examine more aspects of the game state:

// assume we'll use drive sound
var newSound:Object = theDriveSound;

The first test we perform here is to see whether the car is currently on the road. We
use hitTestPoint to determine this. The third parameter in hitTestPoint allows us to
test a point against the specific shape of the road. We need to add gamesprite.x and

Building a Flash Racing Game 443

gamesprite.y to the position of the car because hitTestPoint works at the stage level
with stage positions, rather than at the gamesprite level with gamesprite positions:
// see if car is NOT on the road
if (!gamesprite.road.hitTestPoint(carPos.x+dx+gamesprite.x,
carPos.y+dy+gamesprite.y, true)) {

Note the critically important exclamation point in the previous line of code. The !
means not and reverses the Boolean value that follows it. Instead of looking to see if
the car’s location is inside the road, we check to see if it is 7of in the road.

Now that we know the car is not on the road, the next test is to see whether the car is
at least on the side of the road:
/| see if car is on the side
if (gamesprite.side.hitTestPoint(carPos.x+dx+gamesprite.x,
carPos.y+dy+gamesprite.y, true)) {

If the car is on the side of the road, we use theSideSound rather than thebriveSound.
We also reduce the speed of the car by a small percentage:
// use special sound, reduce speed

newSound = theSideSound;
speed *= 1.0-.001*timeDiff;

If the car is neither on the road nor on the side of the road, we use theoffroadSound
and reduce the speed by a much larger amount:
} else {
/] use special sound, reduce speed
newSound = theOffroadSound;
speed *= 1.0-.005*timeDiff;

Now, we can set the location of the car:

/] set new position of car
gamesprite.car.x = carPos.x+dx;
gamesprite.car.y = carPos.y+dy;

All that is left is to figure out which sound to play. We have newSound set to either
theDriveSound, theSideSound, or theOffroadSound. If the player is not accelerating at
this moment, however, we want to play no sound at all:
// if not moving, forget about drive sound
if (!arrowUp && !arrowDown) {
newSound = null;

444 Chapter 12: Game Worlds: Driving and Racing Games

The newSound variable holds the proper sound. If that sound is already playing, and
looping, however, we don’t want to do anything except let that sound continue. We
only want to take action if a new sound is needed to replace the current sound.

If that is the case, we issue a driveSoundChannel.stop() command to cancel the old
sound, and then a new play command with a high number of loops to begin:
// if a new sound, switch sound
if (newSound != currentSound) {
if (driveSoundChannel != null) ({
driveSoundChannel.stop();

}

currentSound = newSound;
if (currentSound != null) {

driveSoundChannel = currentSound.play(0,9999);
I3

}

In addition to the movecar function, we also need the centerMap function, which is iden-
tical to the one in the top-down driving game in the first part of this chapter. This will
keep the car visually centered on the screen.

Checking Progress

To check the player’s progress around the track, we look at each of the waypoint
objects and see whether the car is close to them. To do this, we use the Point.distance
function. The waypoints array already contains Point objects, but we have to construct
one on-the-fly with the location of the car to compare it to.

I've chosen 150 as the distance needed to hit a waypoint. This is far enough so that the
car cannot miss a waypoint in the middle of the road, even if it passes the waypoint off
to the side. It is critical that you make this distance large enough so that players cannot
sneak by a waypoint easily. If they do, they cannot finish the race, and they have no
reason why:

/| see if close enough to waypoint

public function checkWaypoints() {

for(var i:int=waypoints.length-1;i>=0;i--) {
if (Point.distance(waypoints[i],
new Point(gamesprite.car.x, gamesprite.car.y)) < 150) {
waypoints.splice(i,1);

Building a Flash Racing Game 445

When a waypoint is encountered, it is removed from the array. When the array is
empty, we know that all waypoint objects have been passed.

This is precisely what checkFinishLine looks for first. If the waypoints array has any
items left in it, the player isn’t ready to cross the finish line:

/] see if crossed finish line
public function checkFinishLine() {

// only if all waypoints have been hit
if (waypoints.length > @) return;

On the other hand, if the player has hit all the waypoint objects, we can assume he is
coming up toward the finish line. We check the y value of the car to see whether it
has crossed the y value of the finish movie clip. If it has, the player has completed
the race:

if (gamesprite.car.y < gamesprite.finish.y) {
endGame () ;

NOTE

If you change the map and reposition the finish line, be careful how you test to see
whether the car has crossed finish. For instance, if the car approaches the finish
from the left, you need to check to see whether the x value of the car is greater than
the x value of the finish.

The Countdown and the Clock

Although the clock in this game is similar to the clock in the top-down driving game, it
has a companion clock (in this case, one that counts down the time until the race starts).

If the gameMode is "wait", the race has yet to start. We check the gameTime to see
whether it is negative. If it is, the gameTimer () has not yet caught up with the 3-second
delay we created when we set the gameStartTime to getTimer ()+3000.

Instead of showing the time in the timeDisplay field, we show it in the countdown field.
But, we only show it as a rounded number of seconds: 3, 2, and then 1. We also play
theReadysetSound every time this number changes. Figure 12.10 shows this countdown
clock at the start of the game.

446 Chapter 12: Game Worlds: Driving and Racing Games

Figure 12.10

A number in the
center of the screen
shows the time until
the race begins.

//update the time shown
public function showTime() {
var gameTime:int = getTimer()-gameStartTime;

// if in wait mode, show countdown clock
if (gameMode == "wait") {
if (gameTime < 0) {
// show 3, 2, 1
var newNum:String = String(Math.abs(Math.floor(gameTime/1000)));
if (countdown.text != newNum) {
countdown.text = newNum;
playSound(theReadysetSound);

When the gameTime reaches 0, we change the gameMove and remove the number from
countdown. We also play theGoSound:

} else {
// count down over, go to race mode
gameMode = "race';

countdown.text = "";
playSound (theGoSound)

For the rest of the race, we display the time in the timeDisplay field. The clockTime
function is the exact same one used earlier in this chapter:
/| show time

} else {
timeDisplay.text = clockTime(gameTime);

Building a Flash Racing Game 447

Game Over

When the game ends, we need to do more cleanup than usual. The driveSoundChannel
needs to stop playing any sound. However, we also trigger theBrakeSound at this point.

Then, we remove all the listeners and go to the gameover frame:

/] game over, remove listeners

public function endGame() {
driveSoundChannel.stop();
playSound(theBrakestopSound);
this.removeEventListener(Event.ENTER_FRAME,gameLoop);
stage.removeEventListener(KeyboardEvent.KEY_DOWN, keyDownFunction);
stage.removeEventListener(KeyboardEvent.KEY_UP,keyUpFunction);
gotoAndStop("gameover");

}

After we are at the gameover frame, we show the final score just like with the top-down
driving game. In this case, however, we want to keep the gamesprite visible. In the
main timeline, it exists across both the play and gameover frames, so it stays put when
we go to the gameover frame.

The showFinalMessage function is the same as in the previous game, so there is no need
to repeat it here. The main timeline also has the same code in the gameover frame.

Modifying the Game

The track in this game is pretty simple—just a standard speedway. But, you could make
it much more complex with many twists and turns.

NOTE

The trick to creating first a road and then a roadside movie clip is to just worry about
the road movie clip first. After you have that perfect, make a copy of it and call that
side. Then choose the shape inside that movie clip and choose Modify, Shape,
Expand Fill. Expand the track about 50 pixels. This creates a copy of the road that is
thicker and a perfect match the original road.

You could also put hazards on the road. For instance, oil slicks could slow the car down.
These could be done the same way as Waypoint objects, but the car has to get close to
them to “hit” them. Then, the speed of the car can be affected.

It also common in this type of game to have a dirt patch in the middle of the road. You
could do this by ripping a hole in the road movie clip’s shape and letting the side movie
clip show through.

Another improvement can be to put the waypoint objects in a specific order. Right now,
the game ends when the player hits all the Waypoint objects and then crosses the finish

448

Chapter 12: Game Worlds: Driving and Racing Games

line. But, the order in which the waypoint objects are hit doesn’t matter. So, technically,
the player could drive around the track the wrong way, hit all the Waypoint objects, and
win the minute he hits the last waypoint because he is already above the finish line.
This doesn’t get the player a better time because it takes a while to turn around.

You could order the waypoint objects by naming them something like waypoint0, way-
point1, and so on. Then, you can look for each waypoint by name rather than by type.
Then, only look for the car to be near the next waypoint object, instead of all of them.

