Getting Started with iOS Development
Design and Programming Considerations
Sliding Puzzle Adaptation

Marble Maze Game

Optimizing for iOS Devices

Beyond the iPhone

516 Chapter 15: Building Games for the iPhone

One of the benefits of building games in Flash is that people can play them in almost
any web browser, at least on Macs and PCs. But more and more people are accessing
their web content from mobile phones, like the iPhone. As you probably know, the
iPhone’s web browser does not support Flash.

But that doesn’t mean you can'’t build Flash games for the iPhone. With the new
Packager for iPhone technology in Flash CS5, you can make apps for iOS, the system
that runs on the iPhone, iPod Touch, and iPad. You can even sell these apps in the
Apple App Store.

Getting Started with iOS Development

Building games for i0S is actually relatively easy. Getting them in the hands of players
is a little more difficult. Because the only legitimate way to distribute your games is
through the Apple App Store, you must jump through a lot of hoops before you can
have others playing your game.

/(N NOTE

When CS5 was first released, Apple decided to not allow developers to use it and other
tools like it to make iPhone apps. But in September 2010, they reversed this decision.

Many iPhone app development books spend a whole chapter or more discussing the
administrative tasks you need to perform. Not only is this information available online
at Apple’s developer site, but it also changes too often to make printing it on paper a
good idea.

[cover the basics and let you find the most recent information online with some
quick links.

What You Need

Some of these things you need simply to test your game on an iOS device. You don’t
need some of the other things until you are ready to submit your game to the App Store:

An Apple iPhone developer account—Go to
http://developer.apple.com/iphone/ and purchase an annual subscription. You
cannot submit apps to Apple’s store, nor can you even test your apps on an i0OS
device, without a developer account.

An iOS device—Although it is technically possible to develop, test, and submit
an app to the store without ever testing on an actual iPhone, iPod Touch, or
iPad, it isn’t a good idea. You really need to see how your app performs on the
real thing.

http://developer.apple.com/iphone/

Getting Started with iOS Development 517

NOTE

If you don’t have an iPhone and don’t plan on getting one, the iPod Touch is probably
your best bet for iOS development. As far as games and Flash development are con-
cerned, it is almost the same as the iPhone. Another option is the iPad, which lets you
display iPhone apps in a small window or pixel-doubled. You can then test both iPhone
and iPad apps.

A digital signature—This certificate is something you create yourself using
another piece of software on your Mac or Windows computer. See the section
“Getting Started Building AIR Applications for the iPhone” at
http://help.adobe.com/en_US/as3/iphone/ and read over all the subsections.

A provisioning profile—This is a file you obtain from your Apple developer
account. You must register the app in Apple’s system and then get the file back
from that process. See that same Adobe link to read more about it.

A distribution profile—Another file you need from the Apple developer site,
but instead of being used for testing on your iPhone, this one is needed when it
is time to make a version to submit to the store.

Icons—You need to develop a set of icons to include in your Publishing Settings
when creating an iPhone app. You need png files at 29x29, 57x57, and
512x512. If you are making an iPad app, you need 48x48 and 72x72 as well.

Splash screen image—While the app is loading on the device, this image is
displayed.

A Mac—As of the time of this writing, you can develop your game on Windows,
test it on Windows, transfer it to your iPhone on Windows, and do almost every-
thing you need to submit your app to the store on Windows. But to upload your
app file to the store, you need to run a program that works only on Macs.

NOTE

Typically, the issue of needing a Mac to upload to the App Store isn’t a problem. Most
apps are developed in XCode, Apple’s own development environment that runs only
on Macs. Flash is one of the few ways you can develop an iPhone app on Windows.
So, for the vast majority of app developers, the need-a-Mac-to-upload problem isn’t
even something they notice.

Now, all of this is subject to change. That’s especially true for what you are required to
send to and get from the Apple developer website.

http://help.adobe.com/en_US/as3/iphone/

518

Chapter 15: Building Games for the iPhone

If you check iPhone developer forums all over the Internet, you can see there is a lot of
pain associated with figuring out signature certificates and provisioning profiles. You
have to read over the information at Apple’s site carefully, and sometimes it takes sev-
eral tries to get the right files in the right places.

The iPhone app development pages at Adobe’s site is pretty much required reading if
you hope to successfully build iPhone apps. In addition, the forums at Adobe’s site are
uniquely geared toward Flash developers creating iPhone apps and you'll find help and
camaraderie there:

Adobe’s Packager for iPhone Documentation:
http://help.adobe.com/en_US/as3/iphone/

Packager for iPhone Forum:
http://forums.adobe.com/community/labs/packagerforiphone

Also, make sure you have the latest version of Packager for iPhone. The version that
comes installed with CS5 might not be the most recent. You can find it here:

http://labs.adobe.com/technologies/packagerforiphone/

Publishing for iOS

Creating an iPhone app is a matter of telling Flash that you want to publish a .ipa
(iPhone App) instead of a .swf. You do this in the Publish settings.

Take a quick look again at the section “Publishing Your Game” in Chapter 1, “Using
Flash and ActionScript 3.0.” In Figure 1.17, you can see the Player setting set to Flash
Player 10. This means that your Flash movie publishes as a .swf file that can be
uploaded to the Web and played in the Flash player.

To create an iOS app, you need to change that Player setting to iPhone OS. After
you do, the button directly to the right of that item changes to show Settings, and you
can click it.

General Settings
Figure 15.1 shows the first of three tabs in the iPhone OS Settings dialog box. In here,
you can specify the filename, the name of the app, and the version number. The file-

name isn’t very important, but the app name is what players see under the icon on
their iPhone.

http://help.adobe.com/en_US/as3/iphone/
http://forums.adobe.com/community/labs/packagerforiphone
http://labs.adobe.com/technologies/packagerforiphone/

Getting Started with iOS Development 519

Figure 15.1 IPhane 05 Settings
Under the General [FGeneral-| Deployment lans |
tab of iPhone OS
Settings, you set Output file: | slidingPuzzle.ipa
e
the name of your App name: | slidingPuzzle
app and other Version; 1.0
propertiesl Aspect ratio: | Landscape [
O Full screen
| Auto orientation
Rendering: | GPU]
Device: | iPhone =
*|=]&
Included files: |SlidingPuzzle.swi
ISlidingPuzzle-app.xml
@ (Publish) cancel) (ES0KSS)

You now need to set the starting aspect ratio for your app to Landscape or Portrait and
decide whether you want your app to fill the screen or leave room for the status bar.

If you check Auto Orientation, your app enables itself to rotate when the user turns
their device. You would have to code your game to handle such changes—not a
trivial task.

Next, you want to set Rendering to GPU, which means your app uses the iPhone’s
graphics chips. The other option is CPU (central processing unit), which doesn’t use the
graphics chips. If you choose to use graphics processing unit (GPU), you have to work
harder to optimize your game to take advantage of hardware acceleration. See the
“Optimizing for i0S Devices “ section, later in this chapter.

For Device, select iPhone, iPad, or iPhone and iPad. The first two set the screen size
appropriately, whereas the last option enables you to scale properly for the iPad.

The Included Files section lets you bundle other files, like supporting graphics of XML
files, with your game.

A~ NOTE

Want a loading screen for your game? Include it in the Included Files section as
Default.png. This image displays immediately when your app is launched and stays
on the screen until it is loaded and ready to run.

520

Chapter 15: Building Games for the iPhone

Deployment Settings

The next tab is Deployment, as shown in Figure 15.2. This is where you enter your
developer certificate and provisioning profile. You actually have to export your certifi-
cate as a .p12 file. Read up on the current way to do this at http://help.adobe.com/
en_US/as3/iphone/ and then search for “.p12”.

Figure 1 5.2 iPhone 05 Serrings

As part of dep]oy— | General - Deployment lcons |
ment settings, you iPhone Digital Signature

include your certifi- Use an IPhone certificate (p12) ("More info)
cate and provision- Certificate: U3 (Experiments /Certificates.pl2 9]
lng profl Ie' Password: | =eeesses |

[Remember password for this session

Provisioning profile: ..s/Sliding_Puzzle.mobileprovision ﬂ

App ID: | SlidingPuzzle

iPhone deployment type

) Quick publishing for device testing
() Quick publishing for device debugging
() Deployment = Ad hoc

() Deployment - Apple App Store

@ (publish) (Cancel) (C 0K)

Each certificate has a password associated with it. You need to enter it here each time
you run Flash.

The App ID must match the ID used when you created your provisioning profile. This is
where a lot of the headaches begin. When you first try to publish an iOS game, some-
thing will probably be not quite right. Either your certificate wasn’t built correctly, your
profile doesn’t match the ID, or something else. If you get it all right the first time, you
are in the minority.

The deployment type setting is something you change depending on the stage of devel-
opment. Start with the Quick Publishing for Device Testing, which is what we use in the
rest of this chapter. When you get further along, you want to choose one of the two
deployment settings to complete your game and send it to Apple.

http://help.adobe.com/en_US/as3/iphone/
http://help.adobe.com/en_US/as3/iphone/

Getting Started with iOS Development 521

NOTE

There is a reason why Flash, and XCode for that matter, has device testing and deploy-
ment modes. The first creates a quick bloated file that could, theoretically, work in the
iPhone simulator that comes with XCode. It runs on the Mac’s processor and the
iPhone’s processor. The second is an optimized file that is built specifically for the
iPhone’s processor.

There is no way to test your game using the iPhone simulator, and we don't really
need to because we can test using Flash’s own simulator. But it still takes much less
time to build a device-testing version of your movie than a deployment one. So stick
with that setting for now, but you'll switch to deployment at the end to test your game
in its final stages on your iOS device.

Icons
The last iPhone OS Settings tab takes you to a list of icons. You can specify each icon
by selecting it in the list and then searching for it on your drive.

Figure 15.3 shows this list selection system complete with a preview window so you can
make sure you got the right file.

Figure 15.3 iPhone 05 Serrings
You need to include General | Deployment |leons)
at least three icons,
. licon29x29 |
more if you want icon 57x57
icon 512x512
the game to appear icon 48xa8 (iPad)
. icon 72x72 (iPad)

on the iPad.

20%20 L]

Preview:
@ (publish) ((Cancel) (O OK

These icons are bitmaps, usually PNG files. You can use Flash to create them if you
have no other tools like Fireworks or Photoshop. Just create a 512x512 Flash movie
and then build your icon. Then, export it as an image in each of the sizes. You need the
512x512 for the Apple App Store when you finally submit your app.

522 Chapter 15: Building Games for the iPhone

NOTE

When making icons you don’t need to worry about the curved corners or bubble high-
light that you normally see on iOS app icons. Apple and the iOS add these automati-
cally. So just create a flat, square, good-looking icon.

The iOS Game-Building Process

You can divide the iOS game-building process into several stages.

Develop the Game

This part remains the same as web-based game development. The only differences are
that you have to think about the target platform while developing.

Obviously, the game you are working on should be built for the iPhone (or iPad) screen
and use touch input, not mouse or keyboard input. But the basics of the library, your
ActionScript 3.0 class, movie clips, game functions, and so on are the same.

You still test using the same Control, Test Movie menu item, and you still want to make
a well-built game that is fun to play.

Test Using iOS Publishing

When you get closer to finishing the game, you want to start testing using the Control,
Test, In AIR Debug Launcher (Mobile) setting. This becomes available only when you
select iPhone OS as your Player publishing setting.

This test environment more closely simulates the playback of your game on the iPhone.
It also enables you to simulate rotation with options in a Device menu.

Test on Your iPhone

The next step is to begin testing on your iOS device. This is where things slow down a
bit. To test on your iPhone, you must publish the movie, which produces an .ipa file.
Then, you must sync your iPhone with iTunes on your computer and drag and drop
your .ipa file into iTunes; then, sync that app over to your iPhone.

This all takes quite a bit more time than Command+Return for testing. It takes at least
a minute for the .ipa to publish. Then, you must move the file over through iTunes to
your iPhone.

As before, see the Adobe site for up-to-date information on this whole process, as it
might change.

Design and Programming Considerations 523

NOTE

One frustrating element is trying to get your iPhone to update the app from the previ-
ous version to a new one you are testing. Usually, you need to use iTunes and delete
the app off the iPhone first. Then, replace the old app with the new one in iTunes and
sync again.

Now, for the game to even run on your iPhone, you have to let it know about your pro-
visioning profile. This is where having XCode on your Mac can come in handy, so I rec-
ommend downloading and installing it even if you don’t plan on using the development
environment. You can check your iPhone for provisioning profiles and easily add the
one for your game.

When you are near the end of a project, you want to switch from the Quick Publishing
for Device Testing mode in your publishing settings to the Deployment - Apple App
Store mode. It takes longer to compile the .ipa file, but you might uncover some issues
in your app before you submit it.

Send to Apple

If you've managed to get your certificate right, and your provisioning profile right, and
you've been able to test your app and confirm it works well on your iTunes, then you
are ready to submit to the store.

But more frustration is ahead, believe me. You have to get a new provisioning profile,
one for distribution. You get it from the Apple site, in basically the same place. Then,
you need to upload your app to Apple, complete with more copies of your icons,
screen samples, and the final app, compressed into a .zip.

[don’t go into detail about this process because it is a good idea to review what Adobe
has at their site and also what Apple has at their site. Also, try to keep up-to-date by
connecting with other developers in Adobe’s forums.

So, let’s forget all about the administrative side of things and get back to ActionScript
3.0 coding.

Design and Programming Considerations

Before we launch into our first game, let’s look at some specific design and program-
ming aspects that you need to be aware of. These are areas where iPhone game devel-
opment differs from web-based game development.

Screen Size

Fortunately, the default screen size for Flash, 550x400, isn’t too far away from the
default screen size for the iPhone. In horizontal mode, the iPhone’s screen is 480x320.
In vertical mode, it is the opposite: 320x480.

524 Chapter 15: Building Games for the iPhone

NOTE

The iPhone 4 and 2010 iPod Touch, and most likely all future iOS devices, have a
special “retina display” that is actually 640x960. But, it behaves like a 320x480
screen, just with 4 small pixels inside of each one. For game-development purposes,
you can treat it as a 320x480 screen.

The iPad, on the other hand, has a much larger screen. It is 768x1024 or 1024x768,
depending on which way you are holding it.

So, the basic idea is that you need to resize your games, or start developing them from
the beginning, in one of these screen sizes depending on your target.

Normally, you can set a game to run at portrait or landscape orientation and turn off
Auto Orientation in the publishing settings. Then, you know what size your movie
needs to be, and you can set the movie to exactly that size.

If you prefer for your game to adjust somehow to changing orientations, look in most
Adobe Packager for iPhone documents for some special Stage object events and prop-
erties that deal with the screen.

No Web Page

You're not on the Web anymore. Your Flash movie is now playing all on its own, as a
standalone application might on a Mac or PC. Even more extreme than that, because
iOS devices only display one app at a time, your app is the only content visible to the
user. So, if you've been relying on text on a web page or links to bring up how-to-play
documents or information, you've got to bring that all into your movie. It must be self-
contained, in other words.

Touch

Stop thinking click and start thinking tap. But, they are basically the same thing, right?
Well, they can be. For instance, the MouseEvent.MOUSE_DOWN, MouseEvent.MOUSE_UP, and
MouseEvent.CLICK still work on the iPhone.

You can also use new events like TouchEvent.TOUCH_TAP to specifically react to taps. The
advantage over the mouse events is that you can get stagex and stageY properties of
the events to tell you exactly where the touch occurred.

So, you have a whole set of touch events, and each of them returns a position. For
instance, there are TOUCH_BEGIN, TOUCH_END, and TOUCH_MOVE events. You can track the
progress of a finger “drawing” over the screen.

In addition, some gestures generate events in Flash. For instance, GestureEvent.
GESTURE_TWO_FINGER_TAP fires when the user taps with two fingers. You can find more
listed in the documentation if you want to explore them.

Design and Programming Considerations 525

For the games we create here, we don’t need more than the standard click or tap.

One thing to be aware of is what is missing. Without a mouse, there is no cursor.
Without a cursor, there is no cursor position. When the player isn’t tapping, there is no
focus point for action. This rules out some games where an object might follow the cur-
sor instead of react to clicks.

NOTE

Of course, you also have no keyboard. Yes, a keyboard appears if you have a text field
and ask the user to type something. But, in our games, the keyboard is used for direct
control over the game, such as with the arrow keys or spacebar. You need to replace
these sorts of controls with onscreen buttons or use the accelerometers to translate tilt-
ing into direction.

Processor Speed

Although the iPhone is an incredible device, it still isn’t a computer. The tiny processor
in it is optimized for power consumption much more than your desktop or laptop. So,
you might find that your games don’t run as fast on the iPhone. We cover ways you can
optimize your ActionScript 3.0 code in the “Optimizing for iOS Devices” section, later
in this chapter.

Accelerometers

With the lack of a cursor, smaller screen size, and slower processor, the iPhone isn’t
sounding like much of a game device. But wait, I've saved the best for last!

The accelerometers are a collection of motion-detection sensors in all iOS devices.
They detect acceleration, not position, which is a factor that most developers overlook.

How does your iPhone know when it is horizontal rather than vertical? Well, don’t for-
get that one form of acceleration is gravity. An iPhone that is vertical experiences grav-
ity in that direction. An iPhone that is horizontal experiences it in the other direction.
No matter how slowly you turn your iPhone, it still should know its orientation.

After you understand that accelerometers are measuring gravity’s effect on the device,

you can start to understand the numbers that come back from the Accelerometer class.
Or, you could just make guesses and test and refine your games to work like you want

them to—that is probably how many developers work.

The Accelerometer class sends periodic AccelerometerEvent.UPDATE events that you can
catch and use. You then get accelerationX, accelerationY, and accelerationz values
from each event.

Here is the code you can add to start monitoring the accelerometers. It checks to make
sure they are supported, and then creates a new object. It then starts sending events to
a function.

526

Chapter 15: Building Games for the iPhone

if (Accelerometer.isSupporte(d){
accelerometer = new Accelerometer();

accelerometer.addEventListener(AccelerometerEvent.UPDATE,
accelerometerHandler);

}

That function can then extract the data from all three directions:

private function accelerometerHandler((e){
var aX = e.accelerationX;
var a¥Y = e.accelerationy;
var aZ = e.accelerationZ;

}

The values are in the range of -1 to 1. For instance, if you tilt your iPhone to one side,
you might get an accelerationx value increasing from O to 1. If you tilt it to the other

side, the value moves down to -1. That would measure the acceleration due to gravity

along the x-axis.

One challenge of using accelerometers is how to test your game without building entire
.ipa files and syncing with an iPhone. One method is to provide alternate keyboard con-
trols for the game that work only if Accelerometer.isSupported is false.

Another method uses the Device Central feature of Flash CS5. As of this writing,
iPhone OS is not supported in Device Central, which is made to enable you to test
Flash movies on various platforms. But, you can still use it to test your game.

Change your Publish settings from iPhone OS back to Flash Player 10. Then, choose
Control, Test Movie, In Device Central. On the right are several panels, one of which is
an accelerometer simulator. You can see it in Figure 15.4.

Figure 15.4 FooE B E— s
Device Central isn’t e - ;
built for iPhone
testing, but it can
still come in handy.

Sliding Puzzle Adaptation 527

Next let’s build two simple iPhone games. The first shows how easy it is to adapt one of
the games from earlier in this book to the iPhone. The second uses the accelerometers
to create a game that uses unique capabilities of the iPhone and mobile devices.

Sliding Puzzle Adaptation

Many of the games in this book can be adapted to the iPhone easily. As an example,
let’s take the Sliding Puzzle game from Chapter 6, “Picture Puzzles: Sliding and Jigsaw.”

To get this game working on the iPhone, we barely need to change a thing. All we
need to do is adjust the screen size and make sure to include the external image.

Adjusting the Screen Size

The game has three frames. The first and last are laid out in the timeline. We must
adjust those after we’ve changed the screen size.

Let’s make this game work primarily in horizontal mode because our sample image is
wider than tall. We want a document size of 480x320, which is slightly smaller than our
550x400 original size.

You can choose Modify, Document or click the Edit button next to the Size property in
the Properties Inspector with the stage selected. Figure 15.5 shows the movie as
480x320, with the size defined on the right.

Fi 15. ACO T
igure 5 5 o e— _

The game is now I e i ;

480x320, and the 5 s

graphics have been) =

adjusted to match. || o =
2 ' P
) Sliding Puzzle

Click to slide a puzzle
piece. Try to put the
picture back together.

tiBueEclN £C

In Figure 15.5, you can also see that the text and button on the start screen have been
repositioned to the center of the new document size. You need to do the same for the
text and button on the gameover frame.

We also have to adjust our code. Fortunately, the image itself is small enough to fit in
the new document size, but it must be recentered. Remember how we put the horizon-

528

Chapter 15: Building Games for the iPhone

tal and vertical offsets in constants at the start of the class? Well, that comes in handy
now because we can just change these constants to reposition the puzzle so that it is
centered on the screen:

static const horizOffset:Number = 40;
static const vertOffset:Number = 10;

Those are the only two lines of code that need to be changed in SlidingPuzzle.as to
make iSlidingPuzzle.as. The image is 400x300, so an offset of 40,10 will perfectly
center it in the screen.

Changing Publishing Settings
So, then, it is a matter of changing your publishing settings so the movie publishes as
an iPhone app rather than a .swf.

The section “Publishing for i0S,” earlier in this chapter, covered the basics of that. You
want the app name to be something short so it fits under the icon on the screen.
iSlidingPuzzle just barely makes it.

Then, you want to set the aspect ratio to Landscape, Full Screen. Setting auto rotation
to On is optional, as are a lot of the other settings. When you get the game running on
your iPhone for the first time, you can try some of them out.

Including the Image

The image for the sliding puzzle is slidingimage.jpg and is stored along with the .swf
on the server in a web-based game. As an iPhone game, we need to include all the
external files in the iPhone app bundle.

We can do this with the iPhone OS Settings that we looked at earlier. By selecting File,
Publish Settings, and then clicking the Settings button next to Player: iPhone OS, we
can get to the same dialog as in Figure 15.1. You can also get there by choosing File,
iPhone OS Settings after you have set your movie to publish to iPhone OS.

Figure 15.6 shows that we've added slidingimage.jpg to the list of included files.
We’ve done this by clicking the + button that you can see in the figure and selecting the
file to add it to the list.

Figure 15.6

You can add exter-

nal files to your
iPhone app on the
General tab in the
iPhone OS settings.

Publishing

Sliding Puzzle Adaptation 529

iPhane 05 Setrings.

[“General| Deployment | lcons

Ourput file: jslidingPuzzle.ipa

App name: iSlidingPuzzle

Version: 1.0
Aspect ratio: | Landscape ﬂ
™ Full screen
¥ Auto orientation
Rends - [cpu =
Device: | iPhone =
¢ =&

Included files: | iSlidingPuzzle.swi
ISlidingPuzzle-app.xml
slidingimage.jpg

At this point, try publishing. Instead of getting your normal test window, you should see
a program named adl run, and your movie shows up there. If the orientation is wrong,
use options in the Device menu to rotate it.

Assuming it tests okay, you can publish. This takes considerably longer. On my Mac
Pro, it took 30 seconds. The result is an .ipa file.

Take this file and drag and drop it into iTunes and sync your iOS device. If all worked
well, you should see it running on the iPhone, as in Figure 15.7. You may need to drag
the file to the library on the left side of iTunes.

Figure 15.7

The Sliding Puzzle
game is now work-
ing on the iPhone!

530 Chapter 15: Building Games for the iPhone

Marble Maze Game

Next, let’s build a game from scratch (well, not completely from scratch). We’ll use the
same collision detection concept from the top-down driving game in Chapter 12,
“Game Worlds: Driving and Racing Games.” But, instead of a car on streets, we have a
marble that rolls around on the screen. And instead of using the arrow keys to control
the marble, we use the iPhone’s accelerometers!

Figure 15.8 shows the game. There is a single marble that starts at the upper right.
The screen is filled with walls that get in the way. At the center is a hole for the marble
to fit into.

Figure 15.8
The Marble Maze
game is a simple
way to learn about
using accelerome-
ters in games.

The idea is to roll the ball by tilting the device. The player is pretending that the ball is
really there, and that by tilting the device, the ball will roll downhill. The goal is to guide
the ball to the hole in the middle of the screen.

Setting Up the Class

The movie is set up in our typical three-frame fashion: start, play, and gameover. The
library has the fonts and the button needed for the first and third frames. It also has a
Marble and Hole movie clip, a Block movie clip, and the GameMap movie clip. These last
two are used the same way as the top-down driving game to define the area where the
marble can roll around. Review that example from Chapter 12 right now if you think
you need to.

Marble Maze Game 531

In addition to imports you recognize from previous games, we also need the flash.
sensors.Accelerometer class definition:
package {
import flash.display.*;
import flash.events.*;
import flash.text.*;
import flash.geom.*;
import flash.utils.getTimer;
import flash.sensors.Accelerometer;

The constants in this game define the top speed of the marble and the size of the mar-
ble, for collision-detection purposes. The holebist is the distance from the center of the
hole to the center of the marble that is required for the game to end. The map bound-
aries are also noted in a Rectangle object:

public class MarbleMaze extends MovieClip {

/] constants

static const speed:Number = .3;
static const marbleSize:Number = 20;
static const holeDist:Number = 5;
static const mapRect:Rectangle = new Rectangle(2,2,316,476);

The block locations are stored in the blocks array:

/] game objects
private var blocks:Array;

We need a variable to hold the Accelerometer object, just as we might use a variable to
hold a Timer object in another game:

// accelerometer object
private var accelerometer:Object;

The only other variables are a pair of properties to hold the velocity of the marble, and
a lastTime variable so we can use time-based animation:
/! game variables

private var dx,dy:Number;
private var lastTime:int;

Starting the Game

When the game advances to the play frame, it calls startMarbleMaze in the timeline.
This function starts by looking for all the blocks in the GameMap and recording them for
collision detection later on:

532 Chapter 15: Building Games for the iPhone

public function startMarbleMaze() {

// get blocks
findBlocks();

The starting velocity of the marble is set to 0, although it doesn’t remain so for long:

/] set starting movement
dx = 0.0;
dy = 0.0;

For each frame that passes, we advance the marble and check to see if it has hit

the hole:

// add listeners
this.addEventListener(Event.ENTER_FRAME,gameLoop);

Now, it is time to set up the Accelerometer object so that we get events from it. If the
accelerometer is not available, we set up some keyboard events. This way we can at
least move the marble while testing the game on our Mac or PC.

/ s NOTE
w

To see whether the movie is playing on a device that has accelerometers, use
Accelerometer.isSupported. It returns true only if there are accelerometers. You
might want to develop games that work on both the Mac/PC and the iPhone. In that
case, using this check before trying to set up accelerometer events is important.

// set up accelerometer or simulate with arrow keys
if (Accelerometer.isSupporte(d){
accelerometer = new Accelerometer();

accelerometer.addEventListener(AccelerometerEvent.UPDATE,
accelerometerHandler);

} else {
stage.addEventListener (KeyboardEvent.KEY_DOWN, keyDownFunction);
stage.addEventListener(KeyboardEvent.KEY_UP, keyUpFunction);
stage.focus = stage;

The findBlocks function loops through all the objects in gamesprite, which is an
instance of GameMap that should be placed on frame 2, the play frame, of the movie. It
puts them in the blocks array:
public function findBlocks() {
blocks = new Array();
for(var i=0;i<gamesprite.numChildren;i++) {
var mc = gamesprite.getChildAt(i);

Marble Maze Game 533

if (mc is Block) {
blocks.push(mc);

Game Play

After the game starts, there are regular events sent to accelerometerHandler from the
device. We get the values in two directions and store them directly in the dx and dy vari-
ables:

private function accelerometerHandler((e){
dx = -e.accelerationX;
dy = e.accelerationy;

NOTE

Trial and error have shown that we need to reverse the value of accelerationX to
make the game work as you would expect, with a tilt to the left making the ball move
to the left. You will find yourself using trial and error often to get the input from the
accelerometers to match how you envision your game reacting to the tilt of the device.

Now if we are testing on the computer and have no accelerometers, these keyboard
functions set the dx and dy values directly. They aren’t fine-tuned for real game play,
but they help you test the game:
public function keyDownFunction(event:KeyboardEvent) {
if (event.keyCode == 37) {

dx = -.5;

} else if (event.keyCode == 39) ({
dx = .5;

} else if (event.keyCode == 38) ({
dy = -.5;

} else if (event.keyCode == 40) {
dy = .5;

public function keyUpFunction(event:KeyboardEvent) {
if (event.keyCode == 37) {

dx = 0;
} else if (event.keyCode == 39) ({
dx = 0;

} else if (event.keyCode == 38) ({
dy = 0;

Chapter 15: Building Games for the iPhone

} else if (event.keyCode == 40) ({
dy = 0;

The main function of the game performs the time-based movement and also checks for

a collision with the hole:
public function gameLoop(event:Event) {

/| calculate
if (lastTime) lastTime = getTimer();
var timeDiff:int = getTimer()-lastTime;
lastTime += timeDiff;

time passed

// move the marble
moveMarble (timeDiff);

/| check to see if it is in the hole

if (Point.distance(new Point(gamesprite.marble.x,gamesprite.marble.y), new

Point(gamesprite.hole.x, gamesprite.hole.y)) < holeDist) {
endGame () ;

Collision Detection

The code that prevents the marble from passing through walls is pretty much the same
as in Chapter 12. The rectangles from each wall are examined and measured against the
marble’s rectangle. If they overlap, the marble is pushed back the appropriate amount:

public function moveMarble(timeDiff:Number) {
// calculate current marble area

var marbleRect =
gamesprite.marble.y-marbleSize/2, marbleSize, marbleSize);

/| calculate new marble area

var newMarbleRect = marbleRect.clone();
newMarbleRect.x += dx*speed*timeDiff;
newMarbleRect.y += dy*speed*timeDiff;

/| calculate new location
var newX:Number = gamesprite.marble.x + dx*speed*timeDiff;
var newY:Number = gamesprite.marble.y + dy*speed*timeDiff;

// loop through blocks and check collisions
for(var i:int=0;i<blocks.length;i++) {

new Rectangle(gamesprite.marble.x-marbleSize/2,

Marble Maze Game 535

/] get block rectangle, see if there is a collision
var blockRect:Rectangle = blocks[i].getRect(gamesprite);
if (blockRect.intersects(newMarbleRect)) {

// horizontal push-back

if (marbleRect.right <= blockRect.left) {
newX += blockRect.left - newMarbleRect.right;
dx = 0;

} else if (marbleRect.left >= blockRect.right) {
newX += blockRect.right - newMarbleRect.left;
dx = 0;

/] vertical push-back

if (marbleRect.top >= blockRect.bottom) {
newY += blockRect.bottom - newMarbleRect.top;
dy = 0;

} else if (marbleRect.bottom <= blockRect.top) {
newY += blockRect.top - newMarbleRect.bottom;
dy = 0;

We've also got to check with the sides of the GameMap. An alternative is to just place
Block objects around the outside of the play area:

/] check for collisions with sidees
if ((newMarbleRect.right > mapRect.right) && (marbleRect.right <=
mapRect.right)) {
newX += mapRect.right - newMarbleRect.right;
dx = 0;
}
if ((newMarbleRect.left < mapRect.left) && (marbleRect.left >= mapRect.left))

newX += mapRect.left - newMarbleRect.left;
dx = 0;
}
if ((newMarbleRect.top < mapRect.top) && (marbleRect.top >= mapRect.top)) {
newY += mapRect.top-newMarbleRect.top;
dy = 0;
}
if ((newMarbleRect.bottom > mapRect.bottom) && (marbleRect.bottom <=
mapRect.bottom)) {
newY += mapRect.bottom - newMarbleRect.bottom;
dy = 0;

536 Chapter 15: Building Games for the iPhone

/! set new marble location
gamesprite.marble.x = newX;
gamesprite.marble.y = newY;

NOTE

One thing not addressed in this game is bouncing. Technically, if a marble rolls
toward a wall and then hits it, it bounces. Because the game board would be tilted
against the bounce, it is unlikely the bounce will amount to much or even be notice-
able to the player.

Game Over

When the marble goes in the hole, the game jumps to the last frame after a quick
cleanup. What is cleaned depends on whether we used the accelerometers or the
keyboard:
public function endGame() {
blocks = null;
this.removeEventListener(Event.ENTER_FRAME,gameLoop);
if (Accelerometer.isSupporte(d){
accelerometer.removeEventListener (AccelerometerEvent.UPDATE,
accelerometerHandler);
accelerometer = null;
} else {
stage.removeEventListener(KeyboardEvent.KEY_DOWN, keyDownFunction);
stage.removeEventListener(KeyboardEvent.KEY_UP,keyUpFunction);

}
gotoAndStop("gameover");

Modifying the Game

Games not unlike this one were interesting enough in the first few months of the
iPhone App Store to get some downloads. But, you will certainly want to add more
functionality to make it interesting to the player.

Multiple levels are a must. That can be done with different Gamemap movie clips, or per-
haps a series of frames in GameMap. Each level can get more complex.

In addition, there can be more than just walls and a hole in a level. Perhaps there are
multiple holes, each with a different point value. Or, maybe some holes mean the level
ends in failure instead of success.

You could also include various objects in the game to be collected instead of holes.
Perhaps a timer measures how fast the player can roll the marble around to collect all

Optimizing for iOS Devices 537

the items. The maze wall themselves can be objects that you cannot touch. That makes
the game more challenging, but your programming actually easier.

Optimizing for iOS Devices

Packager for iPhone has prompted developers to push the envelope for Flash games.
The Apple App Store is a new distribution channel and revenue source for developers.
It isn’t one dominated by Flash, however, because most apps are built in Objective C,
the native language used by Apple’s XCode environment. These apps can use real

3D technology and access the iPhone’s processor more directly than you can as a
Flash developer.

As a result, many Flash developers are now looking for ways to optimize their games to
squeeze out more speed. There are many ways to do this. Let’s take a look at a few.

NOTE

These optimization strategies can be used by all Flash developers, not just those mak-
ing iPhone games. If you are trying to push the limits of Flash on the Web, you should
know how to use each one of these techniques.

Use the GPU and Bitmap Caching

Today, all computers have a dedicated GPU—a set of chips that handles putting graphics
on the screen separate from the CPU that handles everything else. Until recently, Flash
used the CPU to draw all graphics and simply passed the finished product to the GPU.

Now, you can tell Flash to use the GPU and render graphics on the screen much faster.
For iPhone apps, this means you can send some graphics to the screen directly, bypass-
ing bottlenecks in the CPU. The speed increase can be dramatic in certain situations.

The key to utilizing the GPU is the cacheAsBitmap property of a display object. Each
time Flash draws an object on the screen, it renders the vector graphic as a bitmap
image, and then adds it to the other graphics on the screen. Bitmap caching forces this
bitmap image to stay in memory. The next time the item is drawn, Flash uses this
image instead of making a new one.

Obviously, this doesn’t work for movie clips that are animating or changing in some way.
These movie clips must remain the same. Only their position on the screen can change.

You have two ways to turn on bitmap caching. The first is to set the property in the
Properties Inspector. It is under Display when you have a movie clip selected on

the stage, as shown in Figure 15.9. Of course, this works only if the movie clip is in
the timeline.

538 Chapter 15: Building Games for the iPhone

Figure 15.9 eRopeRTES[0 =

You can set a movie | [marble | @
I~]

clip to Cache as [Movie clip

Bltmap using the Instance of: Marble
Properties Inspector. F
w200 H:20.0
L] 33.7
A X750 Y2000
Recet Il
[» COLOR EFFECT
~ DISPLAY
Blending: | Normal ||
—————1———% [Cache as bitmap
~7 FILTERS
Property | Value

If, on the other hand, you are creating the sprite using ActionScript 3.0, you need to
set the cacheAsBitmap property in your code, like this:

var mySprite:MyLibraryObject = new MyLibraryObject();

mySprite.cacheAsBitmap = true;

addChild (mySprite);

[use a sprite in this example because you rarely want to use this technique on a movie
clip. Remember that sprites are movie clips with only one frame, or that sit stopped on
a specific frame. If the object is a movie clip and it is animating, caching it does not
work because the image needs to be updated constantly.

A more powerful variation of bitmap caching is cacheAsBitmapMatrix. This works even
when the object is rotated or scaled. To activate this higher level of bitmap caching, you
must do it in your code. Here is an example:

var mySprite:MyLibraryObject = new MyLibraryObject();

mySprite.cacheAsBitmapMatrix = new Matrix();

mySprite.cacheAsBitmap = true;

addChild(mySprite);

NOTE

The cacheAsBitmapMatrix property is only used on iOS devices and some other
devices. It is not used on Macs or PCs. So, you don’t see any performance improve-
ment while testing or on the Web.

When publishing for i0S, make sure you have Rendering set to GPU on the General
tab in the iPhone OS Settings to take advantage of bitmap caching.

Optimizing for iOS Devices 539

Basically, the property tells cacheAsBitmap to store the bitmap at a certain size and ori-
entation. By using a fresh new Matrix object, you are simply storing the object as is.

Object Pooling

Another technique for improving performance is pooling. This is when you create a
pool of display objects and reuse them.

For example, suppose you have a spaceship that fires missiles. The player can fire a
whole volley of missiles at targets. Sometimes there can be a dozen or more on the
screen. They appear, move, and then disappear quickly during the game.

Instead of creating a new object for each missile, adding it to the display list with
addchild, and then removing it with removeChild, you want to reuse the objects.

At the start of the game or level, create a set of these objects and store them in an
array. Put them on the screen, but perhaps just out of the visible area. When you need
one, just change its position to place it where you need it. When you are done, move it
back out of view again.

This saves a lot of effort. Instead of creating a new object all the time and disposing of
it later, Flash just keeps reusing objects. It works especially well in conjunction with
cacheAsBitmap.

NOTE

If your background is a solid color, favor setting the stage color over putting a solid rec-
tangle on the bottom layer. Doing so means one less display object, and Flash draws a
background color faster than a solid background object.

Simplifying Events

Most of the games in this book use a single large class applied to the movie itself.
Remember the Air Raid game in Chapter 4, “Brain Games: Memory and Deduction?”
In that game, the bullets and airplanes each had their own class. And inside that class,
they each listened for an ENTER_FRAME event and had a function that handled it.

Say there were four planes on the screen and seven bullets; that would have been 11
total event listeners, each triggering an event each frame.

But, most of our games are more optimized than that. There can be just one event lis-
tener for the entire movie. Then, that function can handle all the things needed to be
moved or changed in that frame event.

This is a much more optimal way of handling things. Limit yourself to a single
ENTER_FRAME event handler instead of one for each object.

540

Chapter 15: Building Games for the iPhone

In addition, using ENTER_FRAME events is better than using a timer. We do this in most
games, as well. An ENTER_FRAME event triggers a function that then moves objects
according to time-based animation.

But, some programmers use timers, which fire off at regular intervals. You can even up
with one or more, or even non-timer events between frames. It depends on the intervals
and how busy the Flash engine is doing other tasks.

Minimizing Screen Redrawing

Whenever you move or change something on the screen in Flash, the engine must
redraw that area. And by area, I mean a rectangular area.

Sometimes it is easy to make a small change to a large graphic that causes a large rec-
tangular area to change—and then have that change repeat with each frame, slowing
the game down dramatically.

You can test your game in a mode where you can clearly see which parts of the screen
are redrawn at which times. You can trigger this mode one of two ways.

The first works only when you are publishing your movie for the Flash player. In that
case, after the movie is running, you can choose View, Show Redraw Regions. Then,
you see red outlines around the redraw regions like in Figure 15.10.

Figure 15.10 800 Aarhle
The rectangles CINTI
show you which : :
part of the screen is
being redrawn and
help you optimize
your game.

You can also trigger testing in your ActionScript 3.0 code. Just use this line:
flash.profiler.showRedrawRegions(true);

Optimizing for iOS Devices 541

There are many advantages to doing this in code. The first is that you can see the rec-
tangles even when testing a movie set to publish as iPhone OS. The second is that you
can turn it on and then off again at certain points in the game.

More Optimization Techniques
There are many other ways to get your iPhone games running faster.

StageQuality Setting

The way Flash gets its smooth vector graphics look is to throw a lot of processor power
at rendering graphics. It actually draws the entire screen at four times the resolution you
see. Instead of 1 pixel, it draws 16 pixels. Then, it shrinks it down to 25 percent of the
size to display it. The result is the smooth anti-aliased look for all vector graphics.

It is also processor intensive. You can speed up your game dramatically by telling Flash
to render everything at 2x instead of 4x. In other words, 4 pixels for each 1 pixel, and
then shrunk 50 percent. All you need is this line of code at the start of your game.

stage.quality = StageQuality.MEDIUM

You can use LOW instead of MEDIUM, but that renders all graphics at actual size and you
will notice a significant decrease in quality.

NOTE

You can also set the opaqueBackground property of any display object to a color like
0x000000 to tell Flash to render it as a non-alpha-transparent image with a solid color
background. This can be used on background images or graphics that are solid rectan-
gle-like bars that go along the top or bottom of your game. This speeds up the draw-
ing of this object.

Stop Event Propagation

Events are usually sent to more than one place. For instance, when you click a movie
clip, that clip gets the event, but so does anything under it, including the stage.

If you have a lot going on in your movie, a single tap on the touch screen could send
events to all sorts of different objects, none of which have any listener set to react
to them.

To stop events from continuing on after you intercept them in your movie clips, you
can use the Event.stopPropagation() function. Just put it at the start of your listener
functions, like this:

function clickSomething((e){
e.stopPropagation();

542

Chapter 15: Building Games for the iPhone

Use Bitmaps
When reading about bitmap caching earlier in this chapter, you might have wondered
what happens when you don’t use vector graphics, but instead import bitmaps.

The sprites would perform much better than their vector counterparts, because they are
already in a form ready to be displayed on the screen.

The downside is that rotating or scaling them forces Flash to re-render them anyway.
For things such as a large background graphic or a small “bullet” that is used over and
over again, you might want to test out using a bitmap version.

The obvious disadvantage to bitmaps is that they don’t scale well. If your game is played
on a future version of the iPhone with a larger screen, it might not look as good.

Watch Variable Typing
You can skip declaring your variable types and your game still works:

var myVar = 7;
This means that the variables will be an “object” and much more complex because they
must be ready to handle anything: integers, strings, arrays, and so on. Each time the
variable is accessed, it takes Flash some time to interpret the value stored there.
By typing a variable, you simplify it and speed up access:

var myVar:int = 7;
Now this might not seem like a big deal. How often do you access that one variable
anyway? Well, in a game that is constantly checking object properties, it can be easy to

check a variable hundreds or thousands of times per second. Using the simplest type,
such as an int instead of Number, helps speed up this part of your code.

Minimize Text Updates
Every time you change the text in a text field, Flash must do a lot of work to re-render
the image. So, avoid changes as much as you can.

For instance, instead of updating a text field with the game time each and every frame,
update it only when the number of seconds change.

Optimize and Smooth Movie Clips

You should also take a close look at your vector graphics. Are they more complex than
they need to be?

This could be especially true if the artist working on your game isn’t concerned with the
number of curves in his artwork. Chances are he is more worried about it looking good
than optimizing.

Beyond the iPhone 543

Go into some of these movie clips and select the shapes. You can use Modify, Shape,
Optimize and Modify, Shape, Advanced Smooth to reduce the number of points and
curves. Sometimes you find graphics that use thousands of curves when they look just
fine with only hundreds. This simplification greatly improves performance as Flash
works to render all these curves over and over again.

A~ CAUTION

Avoid filters as well. Using object filters like drop shadow, bevels, and so on,
decreases performance. Try to build any graphic effect right into the graphic itself, if
necessary at all.

Optimize Audio

Make sure your audio elements aren’t too big and are compressed a decent amount. A
256Kbps MP3 might sound good, but it takes twice as long to load into memory as a
128Kbps one. Change the audio settings in Publish Settings and test out different levels
to find a good balance. Also, try to use AAC compression, as it performs better.

Bevyond the iPhone

Adobe isn’t stopping at iOS devices. You can also use Flash to create apps for Android
OS devices, as well.

As of this writing, this capability isn’t directly available in CS5, but it is promised in a
future update. You can check out the status of Air for Android here:

http://www.adobe.com/products/air/

The capability to publish for Android is a part of Adobe Integrated Runtime (AIR). This
is the same technology that enables you to build desktop applications for the Mac and
PC. Basically, AIR acts as a sophisticated Flash player built in to the operating system.

Apple’s development restrictions make it necessary for there to be a special Packager
for iPhone export option that creates a standalone .ipa file that works just like any other
iPhone app created by one of the many other methods.

But the publish for Air for Android option is more similar to the plain publish as AIR
setting. It produces a file that relies on AIR being installed in the end user’s system.

Although AIR is on Macs, PCs, and Android devices right now, it is possible that we
can see AIR running on even more mobile devices in the future. When it does, there
will be more ways to distribute the games we have already built in Flash.

http://www.adobe.com/products/air/

