Basic Game Framework:
A Matching Game

Placing Interactive Elements

Game Play

Encapsulating the Game
Adding Scoring and a Clock
Adding Game Effects
Modifying the Game




80 Chapter 3: Basic Game Framework: A Matching Game

Source Files
http://flashgameu.com
A3GPU203_MatchingGame.zip

To build our first game, I've chosen one of the most popular games you can find on the
Web and in interactive and educational software: a matching game.

Matching games are simple memory games played in the physical world using a simple
deck of cards with pictures on them. The idea is to place pairs of cards face down in a
random arrangement. Then, try to find matches by turning over two cards at a time.
When the two cards match, they are removed. If they don’t match, they are turned face
down again.

A good player is one who remembers what cards he or she sees when a match is not
made and can determine where pairs are located after several failed tries.

Computer versions of matching games have advantages over physical versions: You
don’t need to collect, shuffle, and place the cards to start each game. The computer
does that for you. It is also easier and less expensive for the game developer to create
different pictures for the cards with virtual cards rather than physical ones.

To create a matching game, we first work on placing the cards on the screen. To do
this, we need to shuffle the deck to place the cards in a random order each time the
game is played.

Then, we take the player’s input and use that to reveal the pictures on a pair of cards,
and we compare the cards and remove them if they match.

We also need to turn cards back to their face-down positions when a match is not found
and check to see when all the pairs have been found so the game can end.

Placing Interactive Elements

Creating a matching game first requires that you create a set of cards. Because the
cards need to be in pairs, we need to figure out how many cards are displayed on the
screen and make half that many pictures.

For instance, if we want to show 36 cards in the game, there are 18 pictures, each
appearing on 2 cards.

Methods for Creating Game Pieces

There are two schools of thought when it comes to making game pieces, like the cards
in the matching game.


http://flashgameu.com

Placing Interactive Elements 81

Multiple-Symbol Method

The first method is to create each card as its own movie clip. In this case, there are 18
symbols. Each symbol represents a card.

One problem with this method is you are likely duplicating graphics inside of each sym-
bol. For instance, each card would have the same border and background. So, you
would have 18 copies of the border and background.

Of course, you can get around this by creating a background symbol that is then used in
each of the 18 card symbols.

NOTE

Using multiple symbols, one for each card, can prove useful if you are picking cards
from a large group—like if you need 18 cards from a pool of 100. Or, it could be use-
ful if the cards are being imported into the movie from external media files, like a
bunch of JPG images.

The multiple-symbol method still has problems when it comes to making changes. For
instance, suppose you want to resize the pictures slightly. You'd need to do that 18
times for 18 different symbols.

Also, if you are a programmer teaming up with an artist, it is inconvenient to have the
artist update 18 or more symbols. If the artist is a contractor, it could run up the budget
as well.

Single-Symbol Method

The second method for working with a set of playing pieces, such as cards, is a single-
symbol method. You would have one symbol, a movie clip, with multiple frames. Each
frame contains the graphics for a different card. Shared graphics, such as a border or
background, can be on a layer in the movie clip that stretches across all the frames.

NOTE

Even the single-symbol method can use many symbols. For instance, if your playing
pieces are deck of poker cards, you might place the four suits (spades, hearts, dia-
monds, and clubs) in symbols and use them in your main deck symbol on the cards.
That way, if you want to change how the hearts look across your whole deck, you can
do this by just changing the heart symbol.

This method has major advantages when it comes to updates and changes to the play-
ing pieces. You can quickly move between and edit all the frames in the movie clip. You
can also easily grab an updated movie clip from an artist with whom you are working.



82

Chapter 3: Basic Game Framework: A Matching Game

Setting Up the Flash Movie

Using the single-symbol method, we need to have at least one movie clip in the library.
This movie clip contains all the cards and even a frame that represents the back of the
card that we must show when the card is face down.

Create a new movie that contains a single movie clip called card. To create a new
movie in Flash CS5, choose File, New, and then you are presented with a list of file
types. You must choose Flash File (ActionScript 3.0) to create a movie file that works
with the ActionScript 3.0 class file we are about to create.

Put at least 19 frames in that movie clip, representing the card back and 18 card fronts
with different pictures on them. You can open the MatchingGamel1 .fla file for this
exercise if you don’t have your own symbol file to use.

Figure 3.1 shows a timeline for the card movie clip we are using in this game. The first
frame is the “back” of the card. It is what the player sees when the card is supposed to
be face down. Then, each of the other frames shows a different picture for the front of
a card.

Figure 3.1

The card movie e <. H%dmmwmﬂq

clip is a symbol
with 19 frames.
Each frame after
the first represents R TRT TN = TR

7 = Mmmlngcaml.lh'
a different card. o s Do @ oo @)

e

After we have a symbol in the library, we need to set it up so that we can use it with
our ActionScript code. To do this, we need to set its linkage name in the library (see
Figure 3.2).



Placing Interactive Elements 83

Figure 3.2 LIERARY | =]
The Iibrary shows MatchingGamel.fla Iv] 48 =8
the linkage name | |
for the card object. itz Fe]
Name a | Linkage
@ Card Card
al OB ST I 0

There is nothing else needed in the Flash movie. The main timeline is completely
empty. The library has only one movie clip in it, the card movie clip. All we need now
is some ActionScript.

Creating the Basic ActionScript Class

To create an ActionScript class file, choose File, New, and then select ActionScript File
from the list of file types; by doing so you create an untitled ActionScript document that
you can type into.

We start an ActionScript 3.0 file by defining it as a package. This is done in the first
line, as you can see in the following code sample:
package {
import flash.display.*;

Right after the package declaration, we need to tell the Flash playback engine what
classes we need to accomplish our tasks. In this case, we tell it we need access to the
entire flash.display class and all its immediate subclasses. This gives us the ability to
create and manipulate movie clips like the cards.

The class declaration is next. The name of the class must match the name of the file
exactly. In this case, we call it MatchingGame1. We also need to define what this class
affects. In this case, it affects the main Flash movie, which is a movie clip:

public class MatchingGame1 extends MovieClip {
Next is the declaration of any variables that are used throughout the class. However, our

first task of creating the 36 cards on the screen is so simple that we don’t need to use
any variables—at least not yet.



84 Chapter 3: Basic Game Framework: A Matching Game

Therefore, we can move right on to the initialization function, also called the construc-
tor function. This function runs as soon as the class is created when the movie is
played. It must have exactly the same name as the class and the ActionScript file:

public function MatchingGamel():void {

This function does not need to return any value, so we can put :void after it to tell
Flash that nothing is returned from this function. We can also leave the :void off, and it
is assumed by the Flash compiler.

Inside the constructor function, we can perform the task of creating the 36 cards on the
screen. We make it a grid of 6 cards across by 6 cards down.

To do this, we use two nested for loops. The first moves the variable x from 0 to 5.
The x represents the column in our 6x6 grid. Then, the second loop moves y from 0 to
5, which represents the row:
for(var x:uint=0;x<6;x++) {
for(var y:uint=0;y<6;y++) {

Each of these two variables is declared as a uint, an unsigned integer, right inside the
for statement. Each starts with the value 0, and then continues while the value is less
than 6. And, they increase by one each time through the loop.

A4~  NOTE
-

There are three types of numbers: uint, int, and Number. The uint type is for whole
numbers O or higher. The int type is for whole numbers that can be positive or nega-
tive (integers, in other words). The Number type can be positive or negative numbers,
whole or floating point, such as 3.5 or —=173.98. In for loops, we usually use either
uint or int types because we only move in whole steps.

So, this is basically a quick way to loop and get the chance to create 36 different Card
movie clips. Creating the movie clips is just a matter of using new, plus addchild. We
also want to make sure that as each new movie clip is created, it is stopped on its first
frame and is positioned on the screen correctly:
var thisCard:Card = new Card();

thisCard.stop();

thisCard.x = x*52+120;

thisCard.y = y*52+45;

addChild(thisCard);



Placing Interactive Elements 85

/{ NOTE

Adding a symbol in ActionScript 3.0 takes only two commands: new, which allows you
to create a new instance of the symbol; and addChild, which adds the instance to the

display list for the stage. In between these two commands, you want to do things such
as set the x and y position of the new symbol.

The positioning is based on the width and height of the cards we created. In the exam-
ple movie MatchingGamel .fla, the cards are 50 by 50 with 2 pixels in between. So,
by multiplying the x and y values by 52, we space the cards with a little extra space
between each one. We also add 120 horizontally and 45 vertically, which happens to
place the card about in the center of a 550x400 standard Flash movie.

Before we can test this code, we need to link the Flash movie to the ActionScript file.
The ActionScript file should be saved as MatchingGamel .as, and located in the same
directory as the MatchingGamel.fla movie.

Figure 3.3 PROPERTIES | =
You need to set the Fl ocument
Document class of MatchingGamel.fla
a Flash movie to < PUBLISH ]
the name of the AS Player: Flash Player 9
fl]e that contains Script: ActionScript 3.0
your main script. Class: [MatchingGamel | ?
Profile: Default Edif... ]
AIR Seltings
ActionScript Settings Edit...
»+ PROPERTIES |

However, that is not all you need to do to link the two. You also need to set the Flash
movie’s Document class property in the Property Inspector. Just select the Property
Inspector while the Flash movie MatchingGamel .fla is the current document. Figure
3.3 shows the Property Inspector, and you can see the Document class field at the bot-

tom right.

A~ NOTE
-

You can test a movie when either the Flash movie itself is the current document or an
ActionScript file is the current document. When an ActionScript file is the current doc-
ument, look in the upper-right part of the document window for a Target indicator.
This tells you what Flash movie is compiled and run when you test. If the wrong file is
shown as the Target, you can use the drop-down menu to change it.

Figure 3.4 shows the screen after we have tested the movie. The easiest way to test is
to go to the menu and choose Control, Test Movie.



86 Chapter 3: Basic Game Framework: A Matching Game

Figure 3.4 800 MatchingGameL.swf
The screen shows
36 cards, spaced
and in the center of
the stage.

Using Constants for Better Coding

Before we go any further with developing this game, let’s look at how we can make
what we have better. We copy the existing movie to MatchingGame2.fla and the
code to MatchingGame2.as. Remember to change the document class of
MatchingGame2.fla to MatchingGame2 and the class declaration and constructor func-
tion to MatchingGame2.

Suppose you don’t want a 6x6 grid of cards; maybe you want a simpler 4x4 grid or
even a rectangular 6x5 grid. To do that, you need to find the for loops in the previous
code and change the loops so they loop with different amounts.

A better way to do it is to remove the specific numbers from the code all together.
Instead, have them at the top of your code and clearly labeled, so you can easily find
and change them later.

A NOTE

% Putting specific numbers in your code, such as the 6s for the row and column lengths,
is called hard coding. It is considered to be bad practice for programmers because it
makes it harder to adjust your program later, especially for others who want to inherit
your code and find where they can adjust it.

We’ve got several other hard-coded values in our programs. Let’s make a list:

Horizontal Rows = 6

Vertical Rows = 6

Horizontal Spacing = 52
Vertical Spacing = 52
Horizontal Screen Offset = 120
Vertical Screen Offset = 45



Placing Interactive Elements 87

Instead of placing these values in the code, let’s put them in some constant variables up
in our class to make them easy to find and modify:

public class MatchingGame2 extends MovieClip {
// game constants
private static const boardWidth:uint = 6;
private static const boardHeight:uint = 6;
private static const cardHorizontalSpacing:Number = 52;
private static const cardVerticalSpacing:Number = 52;
private static const boardOffsetX:Number = 120;
private static const boardOffsetY:Number = 45;

NOTE

Notice that I chose private static const when defining each constant. The private
means these variables can only be accessed inside this class. The static means they
have the same values in all instances of the class. And, the const means that the val-
ues can never change. If you were to use public var instead, it would give you the
opposite declaration: can be accessed outside of the class and holds different values for
each instance. Because this is the one and only instance of the class and there are no
outside scripts, it really makes no difference, except for neatness.

Now that we have constants, we can replace the code in the constructor function to use
them rather than the hard-coded numbers:

public function MatchingGame2():void {
for(var x:uint=0;x<boardWidth;x++) {
for(var y:uint=0;y<boardHeight;y++) {
var thisCard:Card = new Card();
thisCard.stop();
thisCard.x = x*cardHorizontalSpacing+boardOffsetX;
thisCard.y = y*cardVerticalSpacing+boardOffsetY;
addChild(thisCard);

[ also changed the name of the class and function to MatchingGame2. You can find these
in the sample files MatchingGame2.fla and MatchingGame2.as.

NOTE

As we move through this chapter, we change the filenames of both the ActionScript
file and the movie. If you are following along by creating your own movies from
scratch, remember to change the document class in the Property Inspector so each
movie points to the right ActionScript file. For instance, the MatchingGame2.fla
movie needs to use the MatchingGame2.as file, so its document class should be set
to MatchingGame2.




88 Chapter 3: Basic Game Framework: A Matching Game

In fact, open those two files. Test them one time. Then, test them again after you
change some of the constants. Make the boardHeight only five cards, for instance.
Scoot the cards down by 20 pixels by changing boardoffsetY. The fact that you can
make these changes quickly and painlessly drives home the point of using constants.

Shuffling and Assigning Cards

Now that we can add cards to the screen, we want to assign the pictures randomly to
each card. If there are 36 cards in the screen, there should be 18 pairs of pictures in
random positions.

Chapter 2, “ActionScript Game Elements,” discussed how to use random numbers.
However, we can't just pick a random picture for each card. We need to make sure
there are exactly two of each type of card on the screen. No more, no less; otherwise,
there are no matching pairs.

NOTE

This process is kind of the opposite from shuffling a deck of cards. Instead of mixing
the cards and then picking new cards from the top of the deck, we are using an
ordered list of cards and picking new cards from random spots in the deck.

To do this, we need to create an array that lists each card, and then pick a random card
from this array. Arrays are variables that hold a series of values. We look more closely
at them at the start of Chapter 4, "Brain Games: Memory and Deduction.”

The array is 36 items in length, containing 2 of each of the 18 cards. Then, as we cre-
ate the 6x6 board, we are removing cards from the array and placing them on the
board. When we have finished, the array is empty, and all 18 pairs of cards are
accounted for on the game board.

Here is the code to do this. A variable i is declared in the for statement. It goes from
zero to the number of cards needed. This is the board width times the board height,
divided by two (because there are two of each card). So, for a 6x6 board, there will be
36 cards. We must loop 18 times to add 18 pairs of cards. This new code goes at the
start of the constructor function:
// make a list of card numbers
var cardlist:Array = new Array();
for(var i:uint=0;i<boardWidth*boardHeight/2;i++) {
cardlist.push(i);
cardlist.push(i);

}

The push command is used to place a number in the array twice. Here is what the array
looks like:

0,0,1,1,2,2,83,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17



Placing Interactive Elements 89

Now as we loop to create the 36 movie clips, we pull a random number from this list to
determine which picture displays on each card:
for(var x:uint=0;x<boardWidth;x++) { // horizontal
for(var y:uint=0;y<boardHeight;y++) { // vertical
var c:Card = new Card(); // copy the movie clip
c.stop(); // stop on first frame
c.x = x*cardHorizontalSpacing+boardOffsetX; // set position
c.y = y*cardVerticalSpacing+boardOffsetY;
var r:uint = Math.floor(Math.random()*cardlist.length); // get a random face
c.cardface = cardlist[r]; // assign face to card
cardlist.splice(r,1); // remove face from list
c.gotoAndStop(c.cardface+2);
addChild(c); // show the card

The new lines are in the middle of the code. First, we use this line to get a random
number between zero and the number of items remaining in the list:

var r:uint = Math.floor(Math.random()*cardlist.length);

The Math.random() function returns a number from 0.0 up to just before 1.0. Multiply
this by cardlist.length to get a random number from 0.0 up to 35.9999. Then,

use Math.floor() to round that number down so that it is a whole number from 0 to
35—that is, of course, when there are 36 items in the cardlist array at the start

of the loops.

Then, the number at the location in cardlist is assigned to a property of u named
cardface. Then, we use the splice command to remove that number from the array so
it isn’t used again.

NOTE

Although we usually need to declare and define variables, we can also add dynamic
properties such as cardface to an object. This can only be done if the object is
dynamic, which the Card object is by default because we did not define it otherwise.
The cardface property assumes the type of the value it is assigned (such as a Number,
in this case).

This is not the best programming practice. A better practice is to define a class for the
card, complete with an ActionScript file declaring a package, class, properties, and
constructor function. However, this is a lot of extra work when only one little property
is needed, so the benefits of convenience outweigh the benefits of sticking to strict pro-
gramming practices.

In addition, the MatchingGame3.as script includes this line to test that everything is
working so far:

c.gotoAndStop(c.cardface+2);



90 Chapter 3: Basic Game Framework: A Matching Game

This syntax makes the card movie clip show its picture. So, all 36 cards are face up
rather than face down. It takes the value of the property cardface, which is a number
from O to 17, and then adds 2 to get a number from 2 to 19. This corresponds to the
frames in the card movie clip, where frame 1 is the back of the card, and frame 2 and
so on are the picture faces of the cards.

Obviously, we don’t want to have this line of code in our final game, but it is useful at
this point to illustrate what we have accomplished. Figure 3.5 shows what the screen
might look like after we run the program with this testing line in place.

Figure 3.5 800 MatchingGame3.swf

The third version of

our program 7

includes code L | ‘;’,\ ® | ® » o

that reveals each of > la | -

the cards. This is » A / Qﬂ 2 | @

useful to get visual B

confirmation that p e @ |of | w

your code is work- ® O @l & p

ing so far. —
ol4|/]elale
‘.E? B [~ @ )

Game Play

Now that the game board is set up, we need to let the user click cards to try to find
matches. We also need to keep track of play state, which in this case means whether
the player is clicking the first card or second card and whether all the cards have
been found.

Adding Mouse Listeners

The first step is to get each of the cards we create to respond to mouse clicks. We can
do this by adding a listener to each of these objects. The addEventListener function
does this, and it takes two parameters: which event to listen for and what function to
call when the event occurs. Here is the line of code that we’ll put just before the
addChild statement.:

c.addEventListener(MouseEvent.CLICK,clickCard);

You also need to add another import statement at the start of the class to tell Flash you
want to use events:

import flash.events.*;



Game Play 91

The syntax for the event in this case is MouseEvent.CLICK, which is just a simple click on
the card. When this happens, it should call the function clickCard, which we have yet
to create. We need to create it before testing the movie again because Flash doesn’t
compile our movie with a loose end.

Here is a simple start to the clickcard function:

public function clickCard(event:MouseEvent) {
var thisCard:Card = (event.currentTarget as Card); // what card?
trace(thisCard.cardface);

NOTE

Using a trace statement call to check your code is a great way to program in small
steps to avoid headaches. For instance, if you add 27 lines of code at once and then
the program doesn’t work as expected, you must locate the problem in 27 new lines of
code. If you add only five new lines of code, however, and then use a trace statement
to display the values of key variables, you can solve any problems with those five lines
of code before moving on.

Any time you have a function that responds to an event, it must take at least one para-
meter, the event itself. In this case, it is a value of type MouseEvent, which we assign to
the variable event.

#-  NOTE

You need to accept the event parameter on an event listener function whether you
care about its value or not. For instance, if you create a single button and know that
the function only runs when that button is pressed, you still need to accept the event
as a parameter and then not use it for anything.

In this case, the event parameter is key because we need to know which of the 36
cards the player clicked. The event parameter value is actually an object with all sorts of
properties, but the only property we need to know about is which Card object was
clicked. This would be the target, or more precisely, the currentTarget of the event.

However, the currentTarget is a vague object to the ActionScript engine at this point.
Sure, it is a Card object. However, it is also a movie clip, which is a display object, too.
We want to get its value as a Card object, so we define a variable as a card, and then
use a Card to specify that we want the value of event.currentTarget to be returned

as a Card.

Now that we have a Card object in the variable thisCard, we can access its cardface
property. We use trace to put it in the Output window and run a quick test of
MatchingGame4.fla to make sure it is working.



92

Chapter 3: Basic Game Framework: A Matching Game

Setting Up Game Logic
When a player clicks a card, we need to determine what steps to take based on their
choice and the state of the game. There are three main states we need to deal with:

State 1—No cards have been chosen; player selects first card in a potential
match.

State 2—One card has been chosen; player selects a second card. A compari-
son must be made and action taken based on whether there is a match.

State 3—Two cards have been chosen, but no match was found. Leave those
cards face up until a new card is chosen, and then turn them both over and
reveal the new card.

Figures 3.6 through 3.8 show the three game states.

Figure 3.6 Aann MatchingGame5.swt
State 1, where the

player is about to
Choe i o o EEEEEE

first card.

Figure 3.7 AanNn MatchingGames.swt
State 2, where the

player is about to
L o
e ]




Game Play 93

Figure 3.8 ano MatchingGame5.swi
State 3, where a

pair of cards was

selected, but no .....
match found.

N the v HEEEEEN
et o A | |
another card to ,

start a second pair. ...-..

Then, there are some other considerations. What if the player clicks a card, and then
clicks the same card again? This means the player probably wants to take back the first
choice, so we should turn that card over and return to the first state.

We can predict that we need to keep track of which cards are chosen when the player
is going for a match. So, we need to create our first class variables. We call them
firstCard and secondCard. They are both of type Card:

private var firstCard:Card;

private var secondCard:Card;

Because we haven't set any values for these variables, they both start off with the
default object value of null. In fact, we use the null values of these two variables to
determine the state.

A4~ NOTE

% Not all types of variables can be set to null. For instance, an int variable is set to zero
when it is first created, unless you specify otherwise. You can'’t set it to null even if
you want to.

If both firstCard and secondCard are null, we must be at the first state. The player is
about to choose his first card.

If firstCard is not null and secondCard is null, we are at the second state. The player
will soon choose the card that he hopes matches the first.

If both firstCard and secondCard are not null, we are in the third state. We use the
values of firstCard and secondCard to know which two cards to turn face down when
the user chooses the next firstCard.



924

Chapter 3: Basic Game Framework: A Matching Game

Let’s have a look at the code:

public function clickCard(event:MouseEvent) {
var thisCard:Card = (event.target as Card); // what card?

if (firstCard == null) { // first card in a pair
firstCard = thisCard; // note it
firstCard.gotoAndStop(thisCard.cardface+2); // turn it over

So far, we can see what happens when the player clicks the first card. Notice that the
gotoAndStop command is similar to the one we used to test the card shuffle earlier in
the chapter. It must add 2 to the frame number so that the card values of 0 to 17
match up with the frame numbers of 2 to 19 that contain the 18 card faces.

Now that we have the value of firstCard set, we can expect the second click. This is
handled by the next two parts of the if statement. This part handles the case of when
the player clicks the first card again and turns it back over and sets the value of
firstCard back to null:
} else if (firstCard == thisCard) { // clicked first card again
firstCard.gotoAndStop(1); // turn back over
firstCard = null;

If the player clicks a different card for the second card, a comparison must be made
between the two cards. We’re not comparing the cards themselves, but the cardface
property of the cards. If the faces are the same, a match has been found:
} else if (secondCard == null) { // second card in a pair
secondCard = thisCard; // note it
secondCard.gotoAndStop(thisCard.cardface+2); // turn it over

// compare two cards
if (firstCard.cardface == secondCard.cardface) {

If a match has been found, we want to remove the cards and reset the firstCard and
secondCard variables; this is done by using the removechild command, which is the
opposite of addchild. It takes the object out of the display list and removes it from view.
They are still stored in variables in this case, so we must set those to null so the objects
are disposed by the Flash player.

// remove a match

removeChild(firstCard);

removeChild(secondCard);

/] reset selection

firstCard = null;

secondCard = null;



Game Play 95

The next case is what happens if the player has selected a firstCard, but then selects a
second card that doesn’t match. When the player goes on to click yet another card, the
first two cards turn back over to their face-down position, which is frame 1 of the card
movie clip.

Immediately following that, it should set the firstCard to the new card and show
its picture:
} else { // starting to pick another pair

/| reset previous pair

firstCard.gotoAndStop(1);

secondCard.gotoAndStop(1);

secondCard = null;

/| select first card in next pair

firstCard = thisCard;

firstCard.gotoAndStop(thisCard.cardface+2);

}

That’s actually it for the basic game. You can test out MatchingGame5.fla and
MatchingGame5.as to play it. You can select pairs of cards and see matches removed
from the board.

You can consider this a complete game. You could easily stick a picture behind the
cards in the main movie timeline and have the reward for winning simply be the revela-
tion of the full picture. As an extra add-on to a website, it works fine. However, we can
go much further and add more features.

Checking for Game Over

It is likely that you want to check for a game over state so that you can reward players
with a screen telling them that they have completed the game. The game over state is
achieved when all the cards have been removed.

NOTE

In the examples in this chapter, we take the player to a screen that displays the words
Game Over. However, you could show them an animation or take them to a new web
page, too. But we’ll stick to the game programming here.

There are many ways to do this. For instance, you could have a new variable where you
keep track of the number of pairs found. Every time you find a pair, increase this value
by one, and then check to see when it is equal to the total number of pairs.

Another method would be to check the numchildren property of the MatchingGame
object. When you add 36 cards to it, numChildren is 36. As pairs get removed,
numChildren goes to zero. When it gets to zero, the game is over.



96 Chapter 3: Basic Game Framework: A Matching Game

The problem with that method is that if you place more items on the stage, such as a
background or title bar, they are also counted in numchildren.

In this case, I like a variation on the first idea. Instead of counting the number of cards
removed, count the number of cards shown, so create a new class variable named
cardsLeft:

private var cardsLeft:uint;

Then, set it to zero just before the for loops that create the cards. Add one to this vari-
able for every card created:

cardsLeft = 0;
for(var x:uint=0;x<boardWidth;x++) { // horizontal
for(var y:uint=0;y<boardHeight;y++) { // vertical

var c:Card = new Card(); // copy the movie clip
c.stop(); // stop on first frame
c.Xx = x*cardHorizontalSpacing+boardOffsetX; // set position
c.y = y*cardVerticalSpacing+boardOffsetY;
var r:uint = Math.floor(Math.random()*cardlist.length); // get a random face
c.cardface = cardlist[r]; // assign face to card
cardlist.splice(r,1); // remove face from list
c.addEventListener(MouseEvent.CLICK,clickCard); // have it listen for clicks
addChild(c); // show the card
cardsLeft++;

Then, in the clickCard function, we need to add new code when the user makes a
match and the cards are removed from the screen. This goes in the clickCard function.
cardsLeft -= 2;
if (cardsLeft == 0) {
gotoAndStop("gameover");

A~ NOTE

You can use ++ to add one to a variable, - - to subtract one. For instance, cardsLeft++
is the same as writing cardsLeft = cardsLeft + 1.

You can also use += to add a number to a variable and -= to subtract a number. For
instance, cardsLeft -= 2 is the same as writing cardsLeft = cardsLeft - 2.

That is all we need for coding. Now, the game tracks the number of cards on the
screen using the cardsLeft variable, and it takes an action when that number hits zero.



Encapsulating the Game 97

Figure 3.9 ®00 MatchingGame.swi
The simplest
gameover screen
ever.

GAME OVER

The action it takes is to jump to a new frame, like the one shown in Figure 3.9. If you
look at the movie MatchingGame®6.fla, you can see that I added a second frame. I
also added stop(); commands to the first frame. This makes the movie stop on the first
frame so the user can play the game, instead of continuing on to the second frame.
The second frame is labeled gameover and is used when the cardsLeft property is zero.

At this point, we want to remove any game elements created by the code. However,
because the game only creates 36 cards and then all 36 are removed when the player
finds all the matches, there are no extra items on the screen to remove. We can jump
to the gameover frame without any items on the screen at all.

The gameover screen shows the words Game Over in the sample movie. You can add
additional graphics or even animation here, too. Later in this chapter, we look at how
to add a Play Again button to this frame.

Encapsulating the Game

At this point, we have a game that runs as a whole Flash movie. The movie is
MatchingGameX.fla, and the ActionScript class is MatchingGameX.as. When

the movie runs, the game initializes and starts. The movie is the game, and the game is
the movie.

This works well in simple situations. In the real world, however, you want to have intro-
duction screens, gameover screens, loading screens, and so on. You might even want to
have different screens with different versions of the game or different games completely.

Flash is great at encapsulation. A Flash movie is a movie clip. You can have movie clips
inside of movie clips. So, a game can be the movie, or a game can be a movie clip
inside the movie.

Why would you want to do this? Well, for one thing, it makes it easy to add other
screens to your game. So, we can make frame 1 an introduction screen, frame 2 the



98

Chapter 3: Basic Game Framework: A Matching Game

game, and frame 3 the gameover screen. Frame 2 would actually contain a movie clip
called MatchingGameObject7 that uses the class MatchingGameObject7.as.

Figure 3.10 shows a diagram of the three frames we plan to have in our updated movie
and what each one contains.

Figure 3.10 Frame 1 Frame 2 Frame 1
Intro Screan Game Play Scroen ‘Game Over Screan
The second frame
of the movie con-
Game
tains a movie clip, __ Mcvie Gl ) .
Play Bution | { Play Again Button )

which is the actual
game. The other
frames contain sup-
porting material.

Creating the Game Movie Clip

In MatchingGame7 .fla, there are three frames. Let’s skip right to the second frame.

There, we can see a single movie clip. You might not even notice it at first because it is
a completely empty movie clip and so appears as a small circle at the upper-left corner
of the screen.

In the library, this movie clip is named MatchingGameObject7; and as shown in Figure
3.11, it is assigned the class MatchingGameObject7. You do this by selecting it in the
Library, and then pressing the tiny i button at the bottom of the Library panelF or right-
clicking and choosing Properties.

Figure 3.11 Symbol Properties

This movie clip uses Mame: [MatchingGameObject?
the Matching- Type: [ Movie Clio [+ | [ Cancel_]
GameObject7.as [ an
file as its class. et

[ Enable guides for 3-slice scaling
Linkage
| Expert for ActionScript
|V Expert in frame 1

Class; [MatchingGameObject? 'ZI lz
Hase Class: | 'Zl |Z

Sharing

[J Expart tor runtime sharing

Source

Bruwse... Fille:

Symbol name: Symbol 1




Encapsulating the Game 99

Essentially, this movie clip takes over the entire game, and the main movie timeline is
now a larger movie clip wrapped around it.

When the movie gets to frame 2, the MatchingGameObject7 movie clip springs into exis-
tence, runs the class constructor function in its MatchingGameObject7 .as class, and
the game plays inside this movie clip.

When the movie goes on to frame 3, the whole game disappears because the movie
clip only exists on frame 2.

This enables us to put frames before and after the game (and thus leaves the game code
alone to just worry about the game).

Adding an Introduction Screen

Most games would have an introduction screen. After all, we don’t want to throw play-
ers right into the game. They might need an introduction or instructions.

The intro screen contains some scripting on the main timeline in frame 1. First, it must
stop the movie so that it doesn’t continue past frame 1. Then, it should set up a button
to allow users to start the game.

NOTE

If you want to keep all code off of the main timeline, you could set up a new AS class
file to be the document class for the whole movie. It would run on frame 1, and you
could do the same sorts of things in this class file as you could on the timeline.
However, it is irresistibly easy to add this little bit of code to the main timeline and avoid
creating more files than necessary.The frame script first needs to assign a listener to a
button we create on the first frame. We assign the name playButton to that button.

The event listener calls the function startGame, which issues a gotoAndStop command to
the main timeline, telling it to go to the frame called playgame, which is frame 2.

We also put a stop command on the frame so when the movie runs, it stops on
frame 1 and waits for the user to click this button:
playButton.addEventListener (MouseEvent.CLICK,startGame);

function startGame(event:MouseEvent) {
gotoAndStop("playgame");
}

stop();

On the second frame, the empty movie clip MatchingGameObject7 sits. Then, we need
to rename the document class AS file to MatchingGameObject7.as so that it is used
by this movie clip and not the main movie.



100 Chapter 3: Basic Game Framework: A Matching Game

NOTE

To create an empty movie clip, go to the library and choose New Symbol for its top
menu. Name the symbol, set its type to Movie Clip, and set its properties. Then, drag
the movie clip from the library to the stage. Place it at the upper-left corner so its 0,0
location is the same as the stage’s 0,0 location.

We need to make one change in the code. There is a reference to the main timeline
when the game is over. The gotoAndStop command no longer works properly because
the game is taking place in the movie clip and the gameover frame is on the main time-
line. We need to change this as follows:

MovieClip(root).gotoAndStop("gameover");

NOTE

You would think that you could simply program root.gotoAndStop ("gameover"). After
all, root is indeed the main timeline and the parent of the movie clip. However, the
strict ActionScript compiler does not allow it. The gotoAndStop command can be
issued only to movie clips, and technically, root can be other things, such as a single-
frame movie clip called a sprite. So to ensure the compiler that root is a movie clip,
we type it using the MovieClip () function.

The gameover frame of the movie is the same, for the time being, as in
MatchingGame®6.fla. It is just a frame with the words Game Over on it.

The MatchingGame?7 .fla movie is a little different from the preceding six versions in
that it doesn’t have a document class assigned to it. In fact, there is no
MatchingGame?7 .as file at all. The game code is now in
MatchingGameObject7.as. Take a close look at how this movie is put together,
along with Figure 3.10, to understand how the game fits into the larger main movie.

Adding a Play Again Button

On the last frame, we want to add another button that enables players to play again.

This is as simple as duplicating the original play button from frame 1. Don'’t just copy
and paste; instead, create a duplicate of the button in the library. Then, change the text
on the button from Play to Play Again.

Your gameover frame should now look like Figure 3.12.



Adding Scoring and a Clock 101

Figure 3.12 o scane 1 Edux
The gameover |
screen now has a
Play Again button
on it.

GAME OVER H

PLAY AGAIN
——————

After you have added this button to the third frame, name it playAgainButton using
the Property Inspector so you can assign a listener to it. The frame script should look
like this:

playAgainButton.addEventListener (MouseEvent.CLICK,playAgain);

function playAgain(event:MouseEvent) {
gotoAndStop("playgame");
}

Test out MatchingGame7.fla and see these buttons in action. You've got a versatile
game framework now, where you can substitute content in the intro and gameover
pages and restart the game without fear of leftover screen elements or variable values.
This was quite a problem in ActionScript 1 and 2, but isn’t an issue with this sort of
framework in ActionScript 3.0.

Adding Scoring and a Clock

The goal of this chapter is to develop a complete game framework around the basic
matching game. Two elements commonly seen in casual games are scoring and timers.
Even though the matching game concept doesn’t need them, let’s add them to the
game anyway to make it as full-featured as we can.

Adding Scoring

The first problem is deciding how scoring should work for a game like this. There isn’t
an obvious answer. However, there should be a positive reward for getting a match and
perhaps a negative response for missing. Because it is almost always the case that a
player misses more than he or she finds matches, a match should be worth far more
than a miss. A good starting point is 100 points for a match and -5 points for a miss.



102

Chapter 3: Basic Game Framework: A Matching Game

Instead of hard coding these amounts in the game, let’s add them to the list of con-
stants at the start of the class:

private static const pointsForMatch:int = 100;
private static const pointsForMiss:int = -5;

Now, to display the score, we need a text field. Creating a text field is pretty straightfor-
ward, as you saw in Chapter 2. We first need to declare a new TextField object in the
list of class variables:

private var gameScoreField:TextField;

Then, we need to create that text field and add it as a child:

gameScoreField = new TextField();
addChild(gameScoreField);

Note that adding a text field requires us to also import the text library at the start of our
class. We need to add the following line to the top:

import flash.text.*;

We could also format it and create a nicer-looking text field, as we did in Chapter 2, but
we leave that part out for now.

The score itself is a simple integer variable named gameScore. We declare it at the start
of the class:

private var gameScore:int;

Then, we set it to zero in the constructor function:

gameScore = 0;

In addition, it is a good idea to immediately show the score in the text field:

gameScoreField.text = "Score: "+String(gameScore);

However, we realize at this point that there are at least several places in the code where
we set the text of gameScoreField. The first is in the constructor function. The second is
after the score changes during game play. Instead of copying and pasting the previous
line of code in two places, let’s move it to a function of its own. Then, we can call the
same function from each of the places in the code where we need to update the score:
public function showGameScore() {
gameScoreField.text = "Score: "+String(gameScore);

}

We need to change the score in two places in the code. The first is right after we find a
match, just before we check to see whether the game is over:

gameScore += pointsForMatch;

Then, we add an else clause to the if statement that checks for a match and subtract
points if the match is not found:

gameScore += pointsForMiss;



Adding Scoring and a Clock

Here is the entire section of code so you can see where these two lines fit in:

// compare two cards
if (firstCard.cardface == secondCard.cardface) {
// remove a match
removeChild(firstCard);
removeChild(secondCard);
/| reset selection
firstCard = null;
secondCard = null;
// add points
gameScore += pointsForMatch;
showGameScore();
// check for game over
cardsLeft -= 2; // 2 less cards
if (cardsLeft == 0) {
MovieClip(root).gotoAndStop("gameover");
}
} else {
gameScore += pointsForMiss;
showGameScore();

Notice we are adding points using the += operation, even if there is a miss. This is

103

because the pointsForMiss variable is set to -5. So adding -5 is the same as subtracting

5 points.

We also put in the showGameScore () function call after each change to the score. This

makes sure the player sees an up-to-date score, as shown in Figure 3.13.

Figure 3.13 800 MatchingGame8.swf
The score now e

appears in the
upper left, using
the default font and
style.




104  Chapter 3: Basic Game Framework: A Matching Game

NOTE

In moving from MatchingGame7 .fla to MatchingGame8.fla, you need to do more
than just change the filenames. In the movie, you need to change both the name and
the class of the MatchingGameObject7 movie clip to MatchingGameObject8. It would be
an easy mistake to only change the name of the movie clip but leave the class pointing
to MatchingGameObject7.

Then, of course, you need to change the name of the ActionScript file to
MatchingGame8.as and change the class name and constructor function name, too.

This is true of future versions of the matching game in the rest of this chapter, too.

MatchingGame8.fla and MatchingGame8.as include this scoring code. Take a look
to see it in action.

Adding a Clock

Adding a clock timer is a little harder than adding a score. For one thing, a clock needs
to be updated constantly, as opposed to the score, which only needs to be updated
when the user tries a match.

To have a clock, we need to use the getTimer () function. This returns the time in mil-
liseconds since the Flash movie started. This is a special function that requires a special
Flash class that we need to import at the start of our program:

import flash.utils.getTimer;

NOTE

The getTimer function measures the number of milliseconds since the Flash movie
started. However, it is never useful as a raw time measurement because the player
doesn’t ever start a game the instant the movie appears onscreen. Instead, getTimer is
useful when you take two measurements and subtract the later one from the earlier
one. That is what we do here: get the time the user pressed Play, and then subtract
this from the current time to get the amount of time the game has been played.

Now we need some new variables. We need one to record the time the game started.
Then, we can simply subtract the current time from the start time to get the amount
of time the player has been playing the game. We also use a variable to store the
game time:

private var gameStartTime:uint;
private var gameTime:uint;

We also need to define a new text field to display the time to the player:
private var gameTimeField:TextField;



Adding Scoring and a Clock 105

In the constructor function, we add a new text field to display the time. We also move
to the right side of the screen so that it isn’t on top of the score display:

gameTimeField = new TextField();

gameTimeField.x = 450;

addChild(gameTimeField);

Before the constructor function is done, we want to set the gameStartTime variable. We
can also set the gameTime to zero:

gameStartTime = getTimer();
gameTime = 0;

Now we need to figure out a way for the game time to update. It is changing con-
stantly, so we don’t want to wait for user action to display the time.

One way to do it is to create a Timer object, as in Chapter 2. However, it isn’t critical
that the clock be updated at regular intervals, only that the clock be updated often
enough so players get an accurate sense of how long they have been playing.

Instead of using a Timer, we can just have the ENTER_FRAME event trigger a function that
updates the clock. In a default Flash movie, this happens 12 times a second, which is
certainly enough:

addEventListener(Event.ENTER_FRAME,showTime) ;

All that is left is to make the showTime function. It calculates the current time based on
the current value of getTimer() and the value of gameStartTime. Then, it puts it in the
text field for display:

public function showTime(event:Event) {

gameTime = getTimer()-gameStartTime;
gameTimeField.text = "Time: "+gameTime;

}

Figure 3.14 shows the screen with both the score and the current time. However,
the time format uses a semicolon and two digits for the seconds. You see how to do
this next.



106 Chapter 3: Basic Game Framework: A Matching Game

Figure 3.14 ano MatchingGame9.swt
The time is now et Time: 0:01
displayed at the

upper right.

Displaying Time
The showTime function displays the number of milliseconds since the game started.

Typical players don’t care about milliseconds; they want to see a normal clock with min-
utes and seconds displayed as they would see on a digital watch.

Let’s break this out in another function. Instead of just including the raw gameTime in
the text field as in the preceding code example, we can call a function to return a
nicer output:

gameTimeField.text = "Time: "+clockTime(gameTime);

The idea is that the old code would show this:
Time: 123726

The new code shows the following:
Time: 2:03

The clockTime function takes the time in raw milliseconds and converts it to minutes
and whole seconds. In addition, it formats it to use a colon (:) and makes sure that a
zero is placed correctly when the number of seconds is fewer than ten.

The function starts off by dividing the number of milliseconds by 1,000 to get the num-
ber of seconds. It then divides that by 60 to get the number of minutes.

Next, it must subtract the minutes from the seconds. For instance, if there are 123 sec-
onds, that means there are 2 minutes. So, subtract 2°60 from 123 to get 3 seconds left
over, sincel23 is 2 minutes and 3 seconds:
public function clockTime(ms:int) {
var seconds:int = Math.floor(ms/1000);
var minutes:int = Math.floor(seconds/60);
seconds -= minutes*60;



Adding Scoring and a Clock 107

Now that we have the number of minutes and seconds, we want to make sure that we
insert a colon between them and that the seconds are always two digits.

[ use a trick to do this. The substr function enables you to grab a set number of charac-
ters from a string. The number of seconds is between 0 and 59. Add 100 to that, and
you have a number between 100 and 159. Grab the second and third characters from
that as a string, and you have a range of 00 to 59. The following line is how it looks in
ActionScript:

var timeString:String = minutes+":"+String(seconds+100).substr(1,2);

Now just return the value:

return timeString;

}

The time now displays at the top of the screen in a familiar digital watch format, rather
than just as a number of milliseconds.

Displaying Score and Time After the Game Is Over

Before we finish with MatchingGame9.fla, let’s take the new score and time displays
and carry them over to we finish with the gameover screen.

This is a little tricky because the gameover screen exists on the main timeline, outside of
the game movie clip. To have the main timeline know what the score and time are, this
data needs to be sent from the game to the root level.

Before we call the gotoAndStop command that advances the movie to the gameover
screen, we pass these two values up to root:

MovieClip(root).gameScore = gameScore;
MovieClip(root).gameTime = clockTime(gameTime);

Notice that we pass the score up as a raw value, but we run the time through the handy
clockTime function so that it is a string with a colon and a two-digit second.

At the root level, we need to define those new variables, which use the same names as
the game variables: gameTime and gameScore. I've added this code to the first frame:

var gameScore:int;
var gameTime:String;

Then, on the gameover frame, we use these variables to place values in new text fields
we finish with:

showScore.text = "Score: "+String(gameScore);
showTime.text = "Time: "+gameTime;



108 Chapter 3: Basic Game Framework: A Matching Game

NOTE

To simplify things here, we’re including the "Score: " and "Time: " strings in with
the Score and Time fields. A more professional way to do it is to have the words
Score and Time as static text or graphics on the screen and only the actual score and
time in the fields. In we finish with that case, encasing the gameScore variable inside
the string function is definitely necessary (because the .text property of a text field
must be a string). Setting it to just gameScore is trying to set a string to an integer and
causes an error message.

We don’t need to use code to create the showScore and showTime dynamic text fields;
we can simply do that on the stage with the Flash editing tools. Figure 3.15 shows what
the gameover screen now looks like when a game is complete.

NOTE

Since we’ve got text fields in our timeline we also need to make sure they are set up
properly to display fonts. In the same movie, these fields are set to use Arial Bold and
that font has been included in the library.

This completes MatchingGame9.fla and MatchingGameObject9.fla. We now have
a game with an intro and gameover screen. It keeps track of score and time and we fin-
ish with displays them when the game is over. It also enables the player to play again.

Next, we finish the game by adding a variety of special effects, such as card flips, lim-
ited card-viewing time, and sound effects.

Figure 3.15 ®00 MatchingGame9.swi
A more complete
gameover screen,
with the final score

and time. GAME OVER
Score: 1575
Time: 1:32




Adding Game Effects 109

Adding Game Effects

Gone are the early days of games on the Web, just when the idea of a game in a web
page was cool enough to get your attention. Now, you have to work to add quality, like
little touches such as animation and sound, to your games.

Let’s spruce up this simple matching game with some special effects. Although they
don’t change the basic game play, they make the game seem a lot more interesting
to players.

Animated Card Flips

Because we are flipping virtual cards over and back, it makes sense to want to see this
flip as an animation. You can do this with a series of frames inside a movie clip, but
because you're learning ActionScript here, let’s do it with ActionScript.

NOTE

Using a timeline animation rather than an ActionScript one is difficult here because of
the nature of the cards. You do not want to animate 18 different cards, just 1. So, you
probably put the card faces inside another movie clip and change the frame of that
nested movie clip rather than the main Card movie clip. Then, the Card movie clip can
have frames 2 and on, which is an animated sequence showing a card flip. It is not
easy to envision unless you do a lot of Flash animating.

Because this animation affects the cards, and only the cards, it makes sense to put it
inside the card class. However, we don’t have a card class. We opted at the start of this
chapter to not use a Card class and just allow Flash to assign a default class to it.

Now it is time to create Card class. If we make a Card.as file, however, it is used by
any Card object that is in the folder. We have MatchingGamel.fla through
MatchingGame9.fla with Card objects in it. So, to make it clear that we only want
MatchingGame10.fla to use this card class, we change the name of the symbol and
the class it references to card10. Then, we create a Card10.as ActionScript class file.

This class enables an animated flip of the card, rather than just changing the card
instantly. It replaces all the gotoAndStop functions in the main class. Instead, it tells the
card to startFlip. It also passes in the frame which the card should show when the flip
is over. The card10 class then sets up some variables, sets up an event listener, and pro-
ceeds to animate the card over the next 10 frames:
package {
import flash.display.*;
import flash.events.*;

public dynamic class Card1@ extends MovieClip {
private var flipStep:uint;



110 Chapter 3: Basic Game Framework: A Matching Game

private var isFlipping:Boolean = false;
private var flipToFrame:uint;

// begin the flip, remember which frame to jump to
public function startFlip(flipToWhichFrame:uint) {
isFlipping = true;
flipStep = 10;
flipToFrame = flipToWhichFrame;
this.addEventListener(Event.ENTER_FRAME, flip);

/] take 10 steps to flip
public function flip(event:Event) {
flipStep--; // next step

if (flipStep > 5) { // first half of flip
this.scaleX = .2*(flipStep-6);

} else { // second half of flip
this.scaleX = .2*(5-flipStep);

/] when it is the middle of the flip, go to new frame
if (flipStep == 5) {
gotoAndStop(flipToFrame);

// at the end of the flip, stop the animation
if (flipStep == 0) {
this.removeEventListener(Event.ENTER_FRAME, flip);

So, the flipStep variable starts at 10 when the startFlip function is called. It then is
reduced by one frame each thereafter.

NOTE

The scaleX property shrinks or expands the width of a movie clip. A value of 1.0 is
the default. A value of 2.0 stretches it to twice its width, and a value of .5 makes it half
its width.

If flipStep is between 6 and 10, the scalex property of the card is set to
.2*(flipStep-6), which would be .8, .6, .4, .2, and 0. So, it gets thinner with
each step.



Adding Game Effects 111

Then, when flipStep is between 5 and 0, the new formula of .2*(5-f1ipStep) is used.
So, it would be 0, .2, .4, .6, .8, and then 1.0, and it returns to normal size.

At the fifth step, the card jumps to the new frame. It appears to shrink, goes to noth-
ing, jumps to the new frame, and then grows again.

To accomplish this effect, I had to make one change to how the graphics on the card
movie clip were arranged. In all previous versions of the game, the cards had their
upper-left corner at the center of the movie clip. For the change to scalex to make it
appear that the card was flipping around its center, however, [ had to center the card
graphics on each frame over the center of the movie clip. Compare the card movie
clips in MachingGame9.fla and MatchingGame10.fla to see the difference. Figure
3.16 shows how this looks when editing the movie clips.

Figure 3.16

The left side shows
the registration
point of the movie
clip at the upper
left, as it is in the
first nine example
movies of this
chapter. The right
side shows the
movie clip centered
as it is for the final
example.

At the last step, the event listener is removed completely.

The great thing about this class is it works just as well when the card is being turned
back face down, going to frame 1.

Look at MatchingGameObject10.as and see where all the gotoAndStop calls have
been replaced with startFlip. By doing this, we are not only creating a flip animation,
but we are also giving the card class more control over itself. Ideally, you might want to
give cards complete control over themselves by having the Card10.as class more func-
tions, such as those that set the location of the cards at the start of the game.

Limited Card-Viewing Time

Another nice touch to this game is to automatically turn over pairs of mismatched cards
after the player has had enough time to look at them. For instance, the player chooses
two cards. They don’t match, so they remain face up for the player to inspect. After

2 seconds, however, the cards turn over, even if the player hasn’t begun to select
another pair.



112

Chapter 3: Basic Game Framework: A Matching Game

To accomplish this, we use a Timer. A Timer makes adding this feature relatively easy.
To start, we need to import the Timer class into our main class:

import flash.utils.Timer;

Next, we create a timer variable at the start of the class:

private var flipBackTimer:Timer;

Later in the clickcard function, we add some code right after the player has chosen the

second card, not made a match, and his or her score has been decreased. This Timer

code sets up the new timer, which calls a function when 2 seconds have gone by:
flipBackTimer = new Timer(2000,1);
flipBackTimer.addEventListener(TimerEvent.TIMER_COMPLETE,returnCards);
flipBackTimer.start();

The TimerEvent.TIMER_COMPLETE event is triggered when a timer is done. Typically, a
Timer runs a certain number of times, triggering a TimerEvent.TIMER each time. Then,
on the last event, it also triggers the TimerEvent.TIMER_COMPLETE. Because we only want
to trigger a single event at some point in the future, we set the number of Timer events
to one, and then look for TimerEvent.TIMER_COMPLETE.

When 2 seconds go by, the returncards function is called. This is a new function that
works like the later part of the old c1ickcard function. It flips both the first and second
selections back to the face-down state, and then sets the firstCard and secondCard val-
ues to null. It also removes the listener:
public function returnCards(event:TimerEvent) {

firstCard.startFlip(1);

secondCard.startFlip(1);

firstCard = null;

secondCard = null;

flipBackTimer.removeEventListener(TimerEvent.TIMER_COMPLETE, returnCards);

The returncards function duplicates code that was in clickCard before, so in
MatchingGameObject10.as ['ve replaced this duplicate code in clickCard with a
simple call to returncards. This way, we only have one spot in our code that returns a
pair of cards to the face-down state.

Because returnCards demands a single event parameter, we need to pass that parame-
ter into returnCards whether we have something to pass. So, the call inside clickCard
passes a null:

returnCards(null);
If you run the movie, flip two cards, and then wait, the cards flip back on their own.

Because we have a removeEventListener command in the returnCards function, the lis-
tener is removed even if the returnCards function is triggered by the player turning over



Adding Game Effects 113

another card. Otherwise, the player turns over a new card, the first two cards turns
back, and then the event is triggered after 2 seconds regardless of the fact that the orig-
inal two cards are already face down.

Sound Effects

No game is truly complete without sound. ActionScript 3.0 makes adding sound rela-
tively easy, although there are quite a few steps involved.

The first step is to import your sounds. I've created three sounds and want to bring
them each into the library:

FirstCardSound.aiff
MissSound.aiff
MatchSound.aiff

After we have imported them, they need to have properties changed. Name them all
after their filenames, but minus the .aiff extension. Also, check the Export for
ActionScript option and give them the same class name as symbol name. Figure 3.17
shows one of the sound’s Properties dialog box.

Figure 3.17 Sound Properies |
Each sound is a FirstCardsound o )
doofod - fFlash Games 3/Chapter 3 { Cancel )
class and can be FrstCardSsumddl Y = /
accessed in Wednesday, March 21, 2007 9:27 AM \_Undate )
ActionSCript by its 22 kHz Mono 16 Bit 1.0 5 44.1 kB ( import... )
class name. Conpicss orcll Dafiul S— (et )

{ Sstop

Will use publish setting: MP3, 16 kbps, Mono
Device sound: | ( Basic )
Linkage

™ Expart for ActionScript
i Expart in frame 1

Identifier:

Class: |FirstCardSound | [«] [

Base class: flash, media Sound < &+

Sharing

— Export for runtime sharing

URL




114  Chapter 3: Basic Game Framework: A Matching Game

Next, we set up the main game class to play the sounds at the right time. First, we need
to import two new classes so we can use sound:

import flash.media.Sound;
import flash.media.SoundChannel;

Then, we create class variables to hold references to these sounds:
var theFirstCardSound:FirstCardSound = new FirstCardSound();

var theMissSound:MissSound = new MissSound();
var theMatchSound:MatchSound = new MatchSound();

[ like to pass all sound playback through a single function. Let’s call it playSound and
add it to the end of the class:
public function playSound(soundObject:0Object) {
var channel:SoundChannel = soundObject.play();
}

When we want a sound to play, we call playSound with the sound variable we want to
use, as follows:

playSound(theFirstCardSound);

In MatchingGameObject10.as, 've added playSound(theFirstCardSound) when the
first card is clicked and when a card is clicked while two mismatched cards are shown.

I've added p1laySound (theMissSound) when the second card is turned over and there is

no match. I've added playSound(theMatchSound) when the second card is turned over

and a match is found.

This is all it takes to add sound effects to the game.

NOTE

You might at this point want to review your publish settings to choose your sound
compression settings. Alternatively, you could set the sound compression for each
sound individually in its symbol properties. Either way, you probably want to use some-
thing pretty low, such as 16kbps MP3, because these are simple sound effects.

Modifying the Game

A few more tiny changes before we are done with the game.
First, when we recenter all the cards, it throws off the horizontal and vertical offsets for
the card placement, so that needs to be readjusted:

private static const boardOffsetX:Number = 145;
private static const boardOffsetY:Number = 70;



Modifying the Game 115

How did I come up with those numbers? Well, if you really want to know:

The stage is 550 pixels across. There are 6 cards, each spaced 52 pixels apart.
That’s 550-6*52 for the total space remaining on the left and the right. Divide
by 2 to get the space to the right. However, the cards are centered at 0,0, so |
need to subtract half of the width of a card, or 26. So, (550-6*52)/2-26=145;

Same for the vertical offset: (400-6*52)/2-26=70;

Another loose end to consider is the cursor. When users go to click a card, they don’t
get a special "I can click this" cursor. That is easily changed by setting the buttonMode
property of each card as it is created:

c.buttonMode = true;

Now, we have a finger cursor when the user rolls over the cards. This is the case for
the Play and Play Again buttons because those are Button symbols.

One last change I made is to increase the frame rate of the movie from the default 12
frames per second to 60. You can do this by choosing Modify, Document to change the
main movie document properties.

At 60 frames per second, the flips are much smoother. With the super-fast ActionScript
3.0 engine, even slow machines can run this game at this high frame rate.

That wraps up the matching game, leaving us with the final version files:

MatchingGame10.fla
MatchingGameObject10.as
Card10.as





