
ptg

77
Direction and Movement:
Air Raid II, Space Rocks,
and Balloon Pop

Using Math to Rotate and Move Objects

Air Raid II

Space Rocks

Balloon Pop

ptg

In Chapter 5, “Game Animation: Shooting and Bouncing Games,” the games involved
simple horizontal and vertical movement. Moving along the horizontal or vertical axis is
very easy to program. But arcade games demand more.

In many games, you need to allow the player to turn and move. For instance, a driving
game has both steering and forward movement. A space game also requires this, and
might even need to allow the player to fire weapons in the direction that the player’s
ship is pointing.

Using Math to Rotate and Move Objects
Source Files

http://flashgameu.com

A3GPU207_RotationMath.zip

Combining rotation and movement means that we need to use deeper math than just
addition, subtraction, multiplication, and division. We need to use basic trigonometry,
such as sine, cosine, and arctangents.

If you’re not into math, don’t be scared. ActionScript does the hard part for us.

The Sin and Cos Functions
In Chapter 5, we used variables such as dx and dy to define the difference in horizontal
and vertical positions. An object moving at a dx of 5 and a dy of 0 was moving 5 pixels
to the right and 0 pixels up or down.

But how do we determine what dx and dy are if all we know is the rotation of an
object? Suppose players have the ability to turn an object, like a car, in any direction.
So, players point the car slightly down and to the right. Then, they go to move. You’ve
got to change the x and y properties of the car, but you only know the angle at which
the car is facing.

NOTE
The rotation property of any display object is a number between –180 and 180 rep-
resenting the number of degrees that the object is turned from its original 0 degree
rotation. You can change rotation just like you change the location values x and y.
Rotation can also be more precise, like 23.76 degrees. So, if you want something to
turn slowly, you can add .01 to it every frame or time period.

This is where the Math.cos and Math.sin functions come in. They enable us to compute
dx and dy using only an angle.

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop224

http://flashgameu.com

ptg

Figure 7.1 shows the mathematics behind Math.cos and Math.sin. It is a graph of a cir-
cle. What Math.cos and Math.sin allow us to do is to find any point on the circle given
the angle.

Using Math to Rotate and Move Objects 225

Figure 7.1
This graph of a cir-
cle shows the rela-
tionship between an
angle and the x and
y location of a
point on the circle.

If the angle in question is 0, Math.cos and Math.sin return 1.0 and 0.0, respectively.
This gives us point number 1, which has an x value of 1.0 and a y value of 0.0. So, an
object rotated 0 degrees will move from the center of the circle to point 1.

If the object is pointed 90 degrees, Math.cos and Math.sin return 0.0 and 1.0, respec-
tively. This is point number 2. An object pointed 90 degrees moves straight down.

Similarly, you can see where 180 degrees and 270 degrees lead: the first straight to the
left, the second straight up.

NOTE
Figure 7.1 shows radians as a multiple of pi, the raw radians, and degrees. Radians
and degrees are just two different ways of measuring angles. A complete circle is
360 degrees, which is 2 * pi radians. Pi is approximately 3.14, so 360 degrees =
6.26 radians.

ActionScript uses both degrees and radians. Degrees are used by the rotation prop-
erty of an object. Radians are used by math functions such as Math.cos and Math.sin.
So, we constantly converting back and forth from them.

ptg

These four directions are easy to figure out without the use of Math.cos and Math.sin.
However, it is the angles in between them where we really rely on these trigonometry
functions.

The 5th point is at an angle that is about 57 degrees. Determining where this is on the
circle really does require Math.cos and Math.sin. The results are 0.54 in the x direction
and 0.84 in the y direction. So, if an object were to move 1 pixel in distance while
pointed 57 degrees, it would end up at point 5.

NOTE
It is important to realize that all 5 points, and in fact any point along the circle, are the
exact same distance from the center. So, winding up at any of these points is not a
matter of how fast the object is moving, but only a matter of what direction it is going.

Another important thing to remember is that Math.cos and Math.sin always return val-
ues between –1.0 and 1.0. It assumes that the circle is 1.0 units in radius. So, if an
object is at 57 degrees and moves 1.0 units, it will move to 0.54,0.84. However, if it
has a speed of 5, we multiply that by 5 and get 2.70,4.20 as the amount moved.

Using Cos and Sin to Drive a Car
A simple example helps to explain the use of these trigonometry functions. The movies
MovingCar.fla and MovingCar.as act as a basic driving simulation. A car is placed in
the middle of the screen, and the player can use the left- and right-arrow keys to turn,
and the up arrow to move forward. Figure 7.2 shows the car on the screen.

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop226

Figure 7.2
A simple driving
demonstration
allows the player to
steer and move.

We’ll use some code similar to the Air Raid game of Chapter 5. There will be three
Boolean variables, leftArrow, rightArrow, and upArrow. All of these will be set to true
when players press the associated key, and false when they lift the key back up.

ptg

Here is the start of the class, with the listeners and the code to handle the arrow keys.
Notice that we don’t need any extra imports to use the Math functions. These are part
of the standard ActionScript library:
package {

import flash.display.*;
import flash.events.*;

public class MovingCar extends MovieClip {
private var leftArrow, rightArrow, upArrow: Boolean;

public function MovingCar() {

// move every frame
addEventListener(Event.ENTER_FRAME, moveCar);

// respond to key events
stage.addEventListener(KeyboardEvent.KEY_DOWN,keyPressedDown);
stage.addEventListener(KeyboardEvent.KEY_UP,keyPressedUp);

}

// set arrow variables to true
public function keyPressedDown(event:KeyboardEvent) {

if (event.keyCode == 37) {
leftArrow = true;

} else if (event.keyCode == 39) {
rightArrow = true;

} else if (event.keyCode == 38) {
upArrow = true;

}
}

// set arrow variables to false
public function keyPressedUp(event:KeyboardEvent) {

if (event.keyCode == 37) {
leftArrow = false;

} else if (event.keyCode == 39) {
rightArrow = false;

} else if (event.keyCode == 38) {
upArrow = false;

}
}

On every frame, the moveCar function is called. It looks at each of the Boolean values
and determines what to do if any are true. In the case of the left and right arrows, the
rotation property of the car movie clip is changed, so the car rotates.

Using Math to Rotate and Move Objects 227

ptg

NOTE
Note that we are not using time-based animation here. So, setting the frame rate of
your movie to different values will change the speed of rotation and travel.

If the up arrow is pressed, the moveForward function is called:
// turn or move car forward
public function moveCar(event:Event) {

if (leftArrow) {
car.rotation -= 5;

}
if (rightArrow) {

car.rotation += 5;
}
if (upArrow) {

moveForward();
}

}

This is where we get to use our math. If the up arrow is pressed, we first calculate the
angle, in radians, of the car. We know the rotation of the car, but that is in degrees. To
convert degrees to radians, we divide by 360 (the number of degrees in a circle), and
then multiply by twice pi (the number of radians in a circle). We’ll be using this conver-
sion often, so it is worth breaking it down for clarity:

1. Divide by 360 to convert the 0 to 360 value to a 0 to 1.0 value.

2. Multiply by 2 * pi to convert the 0 to 1.0 value to a 0 to 6.28 value.

radians = 2 * pi * (degrees / 360)

Conversely, when we want to convert radians to degrees, we do this:

1. Divide by 2 * pi to convert the 0 to 6.28 value to a 0 to 1.0 value.

2. Multiply by 360 to convert the 0 to 1.0 value to a 0 to 360 value.

degrees = 360 * radians / (2 * pi)

NOTE
Because both degrees and radians measure angles, the values repeat themselves every
360 degrees or 2 * pi radians. So, 0 degrees and 360 degrees are the same; 90 and
450 degrees are also the same. This even works with negative values. For example,
270 degrees and –90 degrees are the same. In fact, the rotation property of any dis-
play object always returns a value from –180 to 180, which is the same as pi and –pi
radians.

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop228

ptg

Now that we have the angle in radians, we feed it into Math.cos and Math.sin to get
the dx and dy values for movement. We also multiply by speed, a value we set earlier in
the function. This moves the car 5 pixels per frame, rather than 1 pixel per frame.

Finally, we change the x and y properties of the car to actually move it:
// calculate x and y speed and move car
public function moveForward() {

var speed:Number = 5.0;
var angle:Number = 2*Math.PI*(car.rotation/360);
var dx:Number = speed*Math.cos(angle);
var dy:Number = speed*Math.sin(angle);
car.x += dx;
car.y += dy;

}
}

}

Play with the MovingCar.fla movie. Turn the car to different angles and press the up
arrow to see it move. Picture the Math.cos and Math.sin functions translating the angle
to an amount of horizontal and vertical movement.

Then, have some fun. Press down the left- and up-arrow keys at the same time to make
the car go in circles. This is the same effect as turning your steering wheel on your real
car and pressing the gas. The car continues to turn.

Forgetting for a minute about acceleration, we’ve got a pretty fun little car simulation
going. In Chapter 12, “Game Worlds: Driving and Racing Games,” we actually build a
much more complex driving simulation, but the basic use of Math.cos and Math.sin are
at the heart of it.

Calculating an Angle from a Location
Although Math.sin and Math.cos allow you to get x and y coordinates from an angle,
we also occasionally need to get an angle from a set of x and y coordinates. To do this,
we use an arctangent calculation. The ActionScript function for this is Math.atan2.

Figure 7.3 shows how the arctangent function works. Point 1 is located at 6,5 on the
grid. To find its angle, we take the y distance and the x distance and feed them in to
Math.atan2. The result would be .69 radians, or about 40 degrees.

Using Math to Rotate and Move Objects 229

ptg

The second point is at –9,–3. Feeding that into Math.atan2 gives us –2.82 radians, or
–162 degrees. That is the same as 198 degrees. The Math.atan2 function likes to keep
numbers between –180 and 180.

NOTE
There is also a Math.atan function. This takes one parameter: the ratio of the y dis-
tance over the x distance. So, you would use it like Math.atan(dy/dx). This is the tra-
ditional arctangent mathematical function. The problem with it is that you don’t know
whether the result is forward or backward. For instance, –5/3 is the same as 5/–3.
One is 121 degrees, whereas the other is –60 degrees. The Math.atan function
returns –60 degrees for both. The Math.atan2 function gives you the correct angle.

We can create a simple example using an arrow. You can find it in the source files
PointingArrow.fla and PointingArrow.as.

The arrow is located at the center of the screen (location 275,200). Look at Figure 7.4
and notice that the registration point for the movie clip is at the center of the arrow.
When you rotate a movie clip, it rotates around this point. Also, notice that the arrow is
pointing due right. A rotation of 0 corresponds to that direction, so any object created
with the sole purpose of being rotated should be created facing right like this.

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop230

Figure 7.3
The angles of these
two points can be
determined by
using Math.atan2.

ptg
This pointer will point “to” the cursor. So, we have an origin point for the pointer of
275,200 and a destination point of the cursor location. Because it is easy to move the
cursor and change mouseX and mouseY, this is a quick way to experiment with
Math.atan2.

The following short class, from PointingArrow.as, calls a function every frame. This
function computes the dx and dy values from the distance between the cursor and the
pointer’s location. It then uses Math.atan2 to compute the angle in radians. It converts
that to degrees and sets the rotation property of the pointer with it:
package {

import flash.display.*;
import flash.events.*;

public class PointingArrow extends MovieClip {

public function PointingArrow() {
addEventListener(Event.ENTER_FRAME, pointAtCursor);

}

public function pointAtCursor(event:Event) {
// get relative mouse location
var dx:Number = mouseX - pointer.x;
var dy:Number = mouseY - pointer.y;

Using Math to Rotate and Move Objects 231

Figure 7.4
It is easier to rotate
objects that start off
facing right, with
the center of the
movie clip at the
center of rotation.

ptg

// determine angle, convert to degrees
var cursorAngle:Number = Math.atan2(dy,dx);
var cursorDegrees:Number = 360*(cursorAngle/(2*Math.PI));

// point at cursor
pointer.rotation = cursorDegrees;

}
}

}

When you run this movie, the pointer points at the cursor at all times, as you can see in
Figure 7.5. Or, at least while mouseX and mouseY are updating, which is only when the
cursor is over the Flash movie.

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop232

Figure 7.5
The arrow points at
the cursor as long
as the cursor is over
the movie.

NOTE
We can combine these two simple examples to get some interesting results. For
instance, what if the car were steered by the location of the mouse relative to the car?
The car would point at the mouse, and then when you move, it would move toward
the mouse at all times. It would, essentially, chase the mouse. So, what if the player
were to drive the car like in the first example, but a second car points at the mouse
and drives by itself? The second car would chase the first car! See
http://flashgameu.com for an example.

Now that you know how to use trigonometry to observe and control the positions and
movement of objects, we can apply these to some games.

http://flashgameu.com

ptg

Air Raid II
Source Files

http://flashgameu.com

A3GPU207_AirRaid2.zip

In Chapter 5’s Air Raid game, you moved an anti-aircraft gun back and forth using the
arrow keys. This allowed you to aim at different parts of the sky as you shot upward.

Now with the power of Math.sin and Math.cos, we can change this game to keep the
gun stationary, but allow it to aim at an angle to hit different targets.

Altering the Gun
The first thing we need to do is to change the AAGun movie clip to allow for rotating gun
barrels. We’ll take the base of the turret out of the movie clip completely, and place it in
its own movie clip, AAGunBase. The gun barrels will remain in AAGun, but we’ll recenter it
so that the pivot point is at the center and the barrels point to the right, as in Figure 7.6.

Air Raid II 233

Figure 7.6
The barrels must
point to the right to
correspond with cos
and sin values.

http://flashgameu.com

ptg

NOTE
Alternatively, you could have a different set of keys set the rotation (for example, A
and S or the command and period). Then, leave the arrow keys to move the gun, and
you could have both a moving gun and a rotating barrel.

The x and y values of the gun are still set, but the rotation value is also set, to –90.
The value of –90 means that the gun starts pointed straight up. We’ll restrict the value
of the rotation in the same way that we restricted horizontal movement in the first ver-
sion of Air Raid. In this case, the values stay between –170 and –20 degrees, which is
50 degrees to the left or right of straight up.

So, here is our new AAGun.as code. Look for the lines in the following code that
involve the newRotation variable and rotation property:
package {

import flash.display.*;
import flash.events.*;
import flash.utils.getTimer;

public class AAGun extends MovieClip {
static const speed:Number = 150.0;
private var lastTime:int; // animation time

public function AAGun() {
// initial location of gun
this.x = 275;
this.y = 340;
this.rotation = -90;

// movement
addEventListener(Event.ENTER_FRAME,moveGun);

}

public function moveGun(event:Event) {
// get time difference
var timePassed:int = getTimer()-lastTime;
lastTime += timePassed;

// current position
var newRotation = this.rotation;

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop234

The idea is to change the original Air Raid game as little as possible. We’ll be taking the
same values for arrow-key presses and using them to change the rotation property of
the AAGun, rather than the y value.

ptg

// move to the left
if (MovieClip(parent).leftArrow) {

newRotation -= speed*timePassed/1000;
}

// move to the right
if (MovieClip(parent).rightArrow) {

newRotation += speed*timePassed/1000;
}
// check boundaries
if (newRotation < -170) newRotation = -170;
if (newRotation > -20) newRotation = -20;

// reposition
this.rotation = newRotation;

}

// remove from screen and remove events
public function deleteGun() {

parent.removeChild(this);
removeEventListener(Event.ENTER_FRAME,moveGun);

}
}

}

Notice that the speed value of 150 stays the same. It is very likely that switching from
horizontal movement to rotational movement would mean a change in the speed value,
but in this case the value of 150 works well for both.

Changing the Bullets
The Bullets.as class needs to change to have the bullets move upward at an angle,
rather than straight up.

The graphic must change, too. The bullets need to point to the right, and they should
be centered on the registration point. Figure 7.7 shows the new Bullet movie clip.

Air Raid II 235

ptg
The class needs to change to add both dx and dy movement variables. They will be cal-
culated from the angle at which the bullet was fired, which is a new parameter passed
into the Bullet function.

In addition, the bullet needs to start off at some distance from the center of the gun; in
this case, it should be 40 pixels away from center. So, the Math.cos and Math.sin val-
ues are used both to compute the original position of the bullet and to compute the dx
and dy values.

Also, the rotation of the Bullet movie clip will be set to match the rotation of the gun.
So, the bullets will start just above the end of the turret, pointed away from the turret,
and continue to move directly away at the same angle:
package {

import flash.display.*;
import flash.events.*;
import flash.utils.getTimer;

public class Bullet extends MovieClip {
private var dx,dy:Number; // speed
private var lastTime:int;

public function Bullet(x,y:Number, rot: Number, speed: Number) {
// set start position
var initialMove:Number = 35.0;

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop236

Figure 7.7
The new Bullet

movie clip recenters
the graphic and
points it to the
right.

ptg

this.x = x + initialMove*Math.cos(2*Math.PI*rot/360);
this.y = y + initialMove*Math.sin(2*Math.PI*rot/360);
this.rotation = rot;

// get speed
dx = speed*Math.cos(2*Math.PI*rot/360);
dy = speed*Math.sin(2*Math.PI*rot/360);

// set up animation
lastTime = getTimer();
addEventListener(Event.ENTER_FRAME,moveBullet);

}

public function moveBullet(event:Event) {
// get time passed
var timePassed:int = getTimer()-lastTime;
lastTime += timePassed;

// move bullet
this.x += dx*timePassed/1000;
this.y += dy*timePassed/1000;

// bullet past top of screen
if (this.y < 0) {

deleteBullet();
}

}

// delete bullet from stage and plane list
public function deleteBullet() {

MovieClip(parent).removeBullet(this);
parent.removeChild(this);
removeEventListener(Event.ENTER_FRAME,moveBullet);

}

}
}

Changes to AirRaid2.as
Changes are needed to the main class to facilitate the new versions of AAGun and
Bullet. Let’s look at each change. We’ll be creating a new class called AirRaid2.as
and changing the movie’s document class to match it. Remember to also change the
class definition at the top of the code to be AirRaid2 rather than AirRaid.

Air Raid II 237

ptg

In the class variable definitions, we need to add the new AAGunBase movie clip as well as
keep the AAGun movie clip:
private var aagun:AAGun;
private var aagunbase:AAGunBase;

In startAirRaid, we need to account for the fact that there are two movie clips repre-
senting the gun, too. The AAGunBase does not have a class of its own, so we need to set
its position to match that of the AAGun.

NOTE
You could also remove the AAGunBase entirely by using a different design, or seating
the barrels into a graphic that exists at part of the background.

// create gun
aagun = new AAGun();
addChild(aagun);
aagunbase = new AAGunBase();
addChild(aagunbase);
aagunbase.x = aagun.x;
aagunbase.y = aagun.y;

The only other necessary change is down in the fireBullet function. This function
needs to pass on the rotation of the gun to the Bullet class, so that it knows what
direction to shoot the bullet at. So, we’ll add that third parameter to match the third
parameter in the Bullet function that creates a new bullet:
var b:Bullet = new Bullet(aagun.x,aagun.y,aagun.rotation,300);

NOTE
If we were building this game from scratch, we might not even include the first two
parameters, which refer to the position of the gun. After all, the gun won’t be moving,
so it will always remain at the same position. Because we already had code that dealt
with relating the bullet start point to the gun position, we can leave it in and gain the
benefit of having only one place in the code where the gun position is set.

We’ve succeeded in changing the AirRaid2.as class. In fact, if we hadn’t needed to
add the cosmetic AAGunBase to the movie, we would have only needed that last change
in AirRaid2.as. This demonstrates how versatile ActionScript can be if you set it up
with a different class for each moving element.

Now we have a fully transformed Air Raid II game that uses a rotating, but station-
ary gun.

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop238

ptg

Space Rocks
Source Files

http://flashgameu.com

A3GPU207_SpaceRocks.zip

One of the most classic video games of all time was Asteroids. This vector-based arcade
game was released by Atari in 1979. It featured simple single-colored lines for graphics,
very basic sound, and easy ways to cheat and win. Despite this, the game was very
addictive due to great basic game play.

In the game, you controlled a small spaceship. You could turn, shoot, and fly around
the screen. Against you were a few large asteroids moving at random speed and direc-
tions. You could break them apart into smaller asteroids by shooting at them. The small-
est asteroids would disappear when shot. If an asteroid hit you, you lost a life.

We’ll build a game with the same basic concepts: a spaceship, rocks, and missiles. We’ll
even use one of the more advanced features of the original game: a shield.

Game Elements and Design
Before we start, we need to decide what our game, Space Rocks, will be like. We don’t
need to create a complete design document, but a few lists will help us stay focused as
we build the game from scratch.

The game elements are a ship, rocks, and missiles. You can see them, in all variations,
in Figure 7.8.

Space Rocks 239

Figure 7.8
Here are all the
game elements for
Space Rocks.

Let’s look at the abilities of the ship. Here is a list of what the ship can do:

Appears stationary in the middle of the screen to start

Turns left when the left arrow is pressed

http://flashgameu.com

ptg

Turns right when the right arrow is pressed

Accelerates forward when the up arrow is pressed

Moves according to its velocity

Generates a shield when the Z key is pressed

The ship fires a missile. Here’s what the missiles will do:

Created when the player presses the spacebar

Velocity and position determined by location and rotation of ship

Move according to its velocity

Rocks do the following:

Have a random starting velocity and rotation speed

Move according to its velocity

Rotate according to a rotation speed

Have three different sizes: big, medium and small

Collisions are what this game is all about. There are two types of collisions: missile with
rock, and rock with ship.

When a missile and a rock collide, the original rock is removed. If it was a “big” rock,
two medium rocks appear at the same location. If it was a “medium” rock, two “small”
rocks appear at the same location. Small rocks just disappear, no rocks replace them.
The missile in a collision will also be removed.

When a rock and a ship collide, the rock behaves like a missile hit it. The ship is
removed. The player has three lives. If this isn’t the last life for the player, he gets
another ship, which appears in the center of the screen, after two seconds pass.

If the player shoots all the rocks, and there are none left on the screen, the level is over.
After a short delay, a new wave of rocks appears, but a little faster than the last set.

NOTE
In most of the 1970s versions of Asteroids, there was a maximum speed cap on the
speed of the rocks. This allowed an expert player to continue to play indefinitely, or
until the arcade closed or the player’s mom insisted it was time for dinner.

Another action the player can take is to generate a shield. Pressing the Z key creates a
shield around the ship for three seconds. This makes the ship able to pass through
rocks. But, players only have three shields per life. So, they must use them carefully.

One important aspect of the game is that both the ship and rocks wrap around the
screen while moving. If one of them goes off the screen to the left, it appears again on

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop240

ptg

the right. If one goes off the bottom, it appears again on the top. The missiles, how-
ever, just travel to the edge of the screen and disappear.

Setting Up the Graphics
We need a ship, some rocks, and a missile to create this game. The ship is the most
complex element. It needs a plain state, a state with a thruster turned on, and some
sort of explosion animation for it when it is hit. It also needs a shield that covers the
ship at times.

Figure 7.9 shows a movie clip of the ship exploding. There are several frames. The first
is the ship without thrusters, and the second is the ship with thrusters. The rest of the
frames are a short explosion animation.

The shields are actually another movie clip placed inside the ship movie clip. It is pre-
sent on both the first (no thrusters) and second (thrusters) frames. We’ll turn shields off
by setting its visible property to false. And then when we need them, we’ll turn the
visible property to true.

The rocks will actually be a series of movie clips. There will be three for the three sizes:
Rock_Big, Rock_Medium, and Rock_Small. All three movie clips will in turn have three
frames representing three variations of the rocks. This prevents all the rocks from look-
ing the same. Figure 7.10 shows the Rock_Big movie clip, and you can see the
keyframes containing the three variations up in the timeline.

Space Rocks 241

Figure 7.9
This frame of the
ship has both
thrusters and
shields turned on.

ptg
The missile is the simplest element. It is only a small yellow dot. There are also two
other movie clips: ShipIcon and ShieldIcon. These are small versions of the ship, and a
shield. We’ll use these to display the number of ships and shields remaining.

The main timeline is set up in the typical way: three frames with the middle frame call-
ing startSpaceRocks. Now we just need to create the ActionScript to make the game
come alive.

Setting Up the Class
We’ll place all the code in one SpaceRocks.as class file. This will make for the longest
class file in this book so far. The advantage of a single class file here is that all of our
code is in one place. The disadvantage is that it can get long and unwieldy.

To help, we’ll break up the code into smaller sections, each one dealing with a different
screen element. But first, let’s look at the class declaration.

The class needs a typical set of imports to handle all the different objects and structures:
package {

import flash.display.*;
import flash.events.*;
import flash.text.*;
import flash.utils.getTimer;
import flash.utils.Timer;
import flash.geom.Point;

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop242

Figure 7.10
Each movie clip for
the rocks has three
variations of rocks,
all the same size.

ptg

A host of constants allow you to tweak the feeling and difficulty of the game. The speeds
are all measured in units per thousandths of a second, so the shipRotationSpeed is a
pretty fast .1/1000 or 100 degrees per second. The missiles will move at 200 pixels per
second, and the thrusters will accelerate the ship at 150 pixels per second per second.

NOTE
Speed is measured in units per time, such as 100 pixels per second. Acceleration is
the change in speed over time: how many pixels per second the speed changes per
second. So, we can say: pixels per second per second.

The speed of the rocks will depend on the level. It will be .03 plus .02 times the level—
so, .05 for the first level, .07 for the second, and so on.

We also lock-in the radius of the ship, which is kind of round in shape. We’ll use this
radius to detect a collision, instead of relying on the hitTestObject function:

public class SpaceRocks extends MovieClip {
static const shipRotationSpeed:Number = .1;
static const rockSpeedStart:Number = .03;
static const rockSpeedIncrease:Number = .02;
static const missileSpeed:Number = .2;
static const thrustPower:Number = .15;
static const shipRadius:Number = 20;
static const startingShips:uint = 3;

After the constants, we need to define a bunch of variables to be set later. Here are the
variables that hold references to the ship, rocks, and missiles:

// game objects
private var ship:Ship;
private var rocks:Array;
private var missiles:Array;

Then, we have an animation timer that will be used to keep all movement in step:
// animation timer
private var lastTime:uint;

The left-, right-, and up-arrow keys will be tracked by the following Boolean values:
// arrow keys
private var rightArrow:Boolean = false;
private var leftArrow:Boolean = false;
private var upArrow:Boolean = false;

Ship velocity will be broken into two speed values:
// ship velocity
private var shipMoveX:Number;
private var shipMoveY:Number;

Space Rocks 243

ptg

We have two timers. One is the delay after the player loses a ship, before the next one
appears. We’ll also use it to delay the next set of rocks after all the rocks have been
destroyed. The other is the length of time a shield will last:

// timers
private var delayTimer:Timer;
private var shieldTimer:Timer;

There is a gameMode variable that can be set to either "play" or "delay". When it is
"delay", we won’t listen to key presses from the player. We also have a Boolean that
tells us whether the shield is on, and the player can’t be hurt by rocks:

// game mode
private var gameMode:String;
private var shieldOn:Boolean;

The next set of variables deal with the shields and ships. The first two are numbers that
track the number of ships and shields; the second two are arrays that hold references to
the icons displayed on the screen that relay this information to the player:

// ships and shields
private var shipsLeft:uint;
private var shieldsLeft:uint;
private var shipIcons:Array;
private var shieldIcons:Array;

The score is stored in gameScore. It is displayed to the player in a text field we’ll create
named scoreDisplay. The gameLevel variable keeps track of the number of sets of rocks
that have been cleared:

// score and level
private var gameScore:Number;
private var scoreDisplay:TextField;
private var gameLevel:uint;

Finally, we have two sprites. We’ll be placing all the game elements in these two sprites.
The first is gameObjects, and will be our main sprite. But, we’ll place the ship and shield
icons, and the score in the scoreObjects sprite to separate them:

// sprites
private var gameObjects:Sprite;
private var scoreObjects:Sprite;

Starting the Game
The constructor function will start by setting up the sprites. It is important that the
addChild statements appear in this order so that the icons and score stay above the
game elements:

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop244

ptg

// start the game
public function startSpaceRocks() {

// set up sprites
gameObjects = new Sprite();
addChild(gameObjects);
scoreObjects = new Sprite();
addChild(scoreObjects);

The gameLevel is set to 1, and the shipsLeft is set to 3, which comes from the con-
stants defined earlier. The gameScore is zeroed out, too. Then, a call to createShipIcons
and createScoreDisplay will set those things up. We’ll see them soon:

// reset score objects
gameLevel = 1;
shipsLeft = startingShips;
gameScore = 0;
createShipIcons();
createScoreDisplay();

We need three listeners, similar to the Air Raid games. One will be a general frame
function call; the other two deal with key presses:

// set up listeners
addEventListener(Event.ENTER_FRAME,moveGameObjects);
stage.addEventListener(KeyboardEvent.KEY_DOWN,keyDownFunction);
stage.addEventListener(KeyboardEvent.KEY_UP,keyUpFunction);

To kick the game off, we set the gameMode to "delay" and the shieldOn to false, create
an array for the missiles to be stored in, and then call two functions to start the game.
The first creates the first set of rocks, and the second creates the first ship. Because
both of these functions will later be called by event timers, we need to include null as a
parameter here to fill the spot that the event timer value will use later:

// start
gameMode = "delay";
shieldOn = false;
missiles = new Array();
nextRockWave(null);
newShip(null);

}

Score and Status Display Objects
The first large group of functions deals with the number of ships the player has, the
number of shields the player has, and the player’s score. These display in three corners
of the screen.

Space Rocks 245

ptg

The score is shown as text in the upper right. The number of ships left is shown by
zero to three ship icons in the lower left. The number of shields left is shown by zero to
three shield icons in the lower right. Figure 7.11 shows the game at the start with all
three items present.

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop246

Figure 7.11
The score is in the
upper right, the
number of lives in
the bottom left, and
the number of
shields remaining in
the lower right.

To create the ship and shield icons, the next two functions loop and place the three
items on the screen. They are added to their respective arrays so that they can be refer-
ences and removed later:
// draw number of ships left
public function createShipIcons() {

shipIcons = new Array();
for(var i:uint=0;i<shipsLeft;i++) {

var newShip:ShipIcon = new ShipIcon();
newShip.x = 20+i*15;
newShip.y = 375;
scoreObjects.addChild(newShip);
shipIcons. push(newShip);

}
}

Here is a similar function for the shield icons:
// draw number of shields left
public function createShieldIcons() {

shieldIcons = new Array();
for(var i:uint=0;i<shieldsLeft;i++) {

var newShield:ShieldIcon = new ShieldIcon();
newShield.x = 530-i*15;
newShield.y = 375;
scoreObjects.addChild(newShield);

ptg

shieldIcons.push(newShield);
}

}

NOTE
We could also have avoided the icons altogether and just used text fields to display the
number of ships and shields remaining. This would be less code, but not as visually
interesting.

Creating the score display is a matter of making a new text field and setting its proper-
ties. We also create a temporary TextFormat variable and use that to set the
defaultTextFormat of the field:
// put the numeric score at the upper right
public function createScoreDisplay() {

scoreDisplay = new TextField();
scoreDisplay.x = 500;
scoreDisplay.y = 10;
scoreDisplay.width = 40;
scoreDisplay.selectable = false;
var scoreDisplayFormat = new TextFormat();
scoreDisplayFormat.color = 0xFFFFFF;
scoreDisplayFormat.font = "Arial";
scoreDisplayFormat.align = "right";
scoreDisplay.defaultTextFormat = scoreDisplayFormat;
scoreObjects.addChild(scoreDisplay);
updateScore();

}

At the end of createScoreDisplay, we call updateScore immediately to put a 0 into the
field, because that is the value of gameScore at this point. But, the updateScore function
will be used later, too, any time we have a change in the score:
// new score to show
public function updateScore() {

scoreDisplay.text = String(gameScore);
}

When it comes time to remove a ship or a shield, we need to pop an item from the
shipIcons or shieldIcons arrays and removeChild from the scoreObjects to erase the icon:
// remove a ship icon
public function removeShipIcon() {

scoreObjects.removeChild(shipIcons.pop());
}

Space Rocks 247

ptg

// remove a shield icon
public function removeShieldIcon() {

scoreObjects.removeChild(shieldIcons.pop());
}

We should also add functions that loop and remove all the icons. We need this at the
end of the game; and for the shields, we need it at the end of a life. We want to give
the player a full three shields with every new ship, so we’ll just delete the shield icons
and start over again when that happens:
// remove the rest of the ship icons
public function removeAllShipIcons() {

while (shipIcons.length > 0) {
removeShipIcon();

}
}

// remove the rest of the shield icons
public function removeAllShieldIcons() {

while (shieldIcons.length > 0) {
removeShieldIcon();

}
}

Ship Movement and Player Input
The next set of functions all deal with the ship. The first function creates a new ship.
The rest of the functions deal with moving the ship.

Creating a New Ship
The newShip function is called at the start of the game, and it is also called two seconds
after the previous ship’s demise. On those subsequent times, it will be a timer that does
the calling, so a TimerEvent is passed to it. We won’t need it for anything, however.

On the 2nd, 3rd, and 4th times, the function is called, the previous ship still exists. It
will have played out its explosion animation. At the end of this animation, a simple stop
command pauses the movie clip at the last frame, which is blank. So, the ship is still
there, just invisible. We’ll look for the ship to be something other than null, and then
remove the ship and clear it out before doing anything else.

NOTE
In other games, it might be desirable to remove the ship as soon as the explosion ani-
mation is over. In that case, you can just place a call back to the main class from within
the ship timeline. This call can be on the last frame of the animation, so you know the
animation is over and the object can be removed.

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop248

ptg

// create a new ship
public function newShip(event:TimerEvent) {

// if ship exists, remove it
if (ship != null) {

gameObjects.removeChild(ship);
ship = null;

}

Next, we check to see whether any ships are left. If not, the game is over:
// no more ships
if (shipsLeft < 1) {

endGame();
return;

}

A new ship is created, positioned, and set to the first frame, which is the plain ship with
no thruster. The rotation is set to –90, which will point it straight up. We also need to
remove the shield. Then, we can add the movie clip to the gameObjects sprite:

// create, position, and add new ship
ship = new Ship();
ship.gotoAndStop(1);
ship.x = 275;
ship.y = 200;
ship.rotation = -90;
ship.shield.visible = false;
gameObjects.addChild(ship);

The velocity of the ship is stored in the shipMoveX and shipMoveY variables. And now
that we’ve created a ship, the gameMode can be changed from "delay" to "play":

// set up ship properties
shipMoveX = 0.0;
shipMoveY = 0.0;
gameMode = "play";

With every new ship, we reset the shields to 3. Then, we need to draw the three little
shield icons at the bottom of the screen:

// set up shields
shieldsLeft = 3;
createShieldIcons();

When the player loses a ship, and a new ship appears, there is a chance that it will
reappear in the middle of the screen at exactly the moment that a rock passes by. To
prevent this, we can use the shields. By turning the shields on, the player is guaranteed
to be collision-free for three seconds.

Space Rocks 249

ptg

NOTE
The original arcade games of this type avoided the problem of having a ship appear in
the middle of a rock by simply waiting until the middle of the screen was relatively
empty before creating a new ship. You could do this, too, by checking the distance of
each rock to the new ship, and just delaying another two seconds if anything is close.

Note that we only want to do this if this is not the first time the ship appears. The first
time it appears, the rocks will also be making their first appearance, which are at preset
locations away from the center.

When we call startShield here, we pass the value true to it to indicate that this is a
free shield. It won’t be charged against the player’s allotted three shields per ship:

// all lives but the first start with a free shield
if (shipsLeft != startingShips) {

startShield(true);
}

}

Handling Keyboard Input
The next two functions take care of key presses. As with Air Raid, we track the left and
right arrows. We also care about the up arrow. In addition, we react to the spacebar
and the Z key, when they are pressed.

In the case of the up arrow, we also turn on the thruster by telling the ship to go to the
second frame, where the thruster image is located.

A spacebar calls newMissile, and a Z calls startShield:
// register key presses
public function keyDownFunction(event:KeyboardEvent) {

if (event.keyCode == 37) {
leftArrow = true;

} else if (event.keyCode == 39) {
rightArrow = true;

} else if (event.keyCode == 38) {
upArrow = true;
// show thruster
if (gameMode == "play") ship.gotoAndStop(2);

} else if (event.keyCode == 32) { // space
newMissile();

} else if (event.keyCode == 90) { // z
startShield(false);

}
}

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop250

ptg

The keyUpFunction turns the thruster off when the player lifts up on the up-arrow key:
// register key ups
public function keyUpFunction(event:KeyboardEvent) {

if (event.keyCode == 37) {
leftArrow = false;

} else if (event.keyCode == 39) {
rightArrow = false;

} else if (event.keyCode == 38) {
upArrow = false;
// remove thruster
if (gameMode == "play") ship.gotoAndStop(1);

}
}

Ship Movement
All the animation functions in this game will accept timeDiff as a parameter. This is just
like the timePassed variable in other games with animation. However, instead of each
animation function calculating its own timePassed, we calculate it in a single function,
moveGameObjects, that then calls all three animation functions and passes it along. All
the objects then move through time in step with each other.

Ship movement can mean turning, flying, or both. If the left or right arrow is pressed,
the ship turns, depending on the timeDiff and the shipRotationSpeed constant.

If the up arrow is pressed, the ship should accelerate. This is where we use Math.cos
and Math.sin to determine how much influence the thrust has on the horizontal and
vertical movement of the ship:
// animate ship
public function moveShip(timeDiff:uint) {

// rotate and thrust
if (leftArrow) {

ship.rotation -= shipRotationSpeed*timeDiff;
} else if (rightArrow) {

ship.rotation += shipRotationSpeed*timeDiff;
} else if (upArrow) {

shipMoveX += Math.cos(Math.PI*ship.rotation/180)*thrustPower;
shipMoveY += Math.sin(Math.PI*ship.rotation/180)*thrustPower;

}

Next, the ship’s position is updated according to the velocity:
// move
ship.x += shipMoveX;
ship.y += shipMoveY;

Space Rocks 251

ptg

One of the things that makes this genre of games special is the way the ship can go off
the screen on one side and show up on the other. Here is the code that does that. There
are a lot of hard-coded numbers here that could be moved to constants at the top of the
script. But, leaving them here actually makes the code easier to read and understand.

The screen is 550 pixels wide and 400 pixels high. We don’t want to wrap the ship as
soon as it hits the edge of the screen, but instead as it is just out of sight. So, at 570,
the ship wraps back 590, putting it at –20. Because the ship would be moving to the
right to do this, it will not be out of view for any period of time.

NOTE
The extra 20 pixels that we are adding at the edges of the screen is a sort of dead
zone for the game. You can’t see things there, and the missiles won’t be there either
because they die at the very edge of the screen.

You need to ensure that this area is not any larger; otherwise, small rocks moving very
vertically or horizontally will get lost for a while. It would also be easy to lose your ship
there if the area is too big.

But, if you make it too small, objects will seem to snap out of existence at one edge of
the screen and then reappear at the other edge.

// wrap around screen
if ((shipMoveX > 0) && (ship.x > 570)) {

ship.x -= 590;
}
if ((shipMoveX < 0) && (ship.x < -20)) {

ship.x += 590;
}
if ((shipMoveY > 0) && (ship.y > 420)) {

ship.y -= 440;
}
if ((shipMoveY < 0) && (ship.y < -20)) {

ship.y += 440;
}

}

Handling Ship Collisions
When the ship is hit by a missile, it should explode. To do this, the ship goes to the
third frame, labeled "explode". The removeAllShieldIcons function gets rid of the shield
icons on the screen. Then, a timer is set up to call newShip after two seconds. The
number of ships is reduced by one, and the removeShipIcon is called to take one of the
icons off the screen:
// remove ship
public function shipHit() {

gameMode = "delay";

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop252

ptg

ship.gotoAndPlay("explode");
removeAllShieldIcons();
delayTimer = new Timer(2000,1);
delayTimer.addEventListener(TimerEvent.TIMER_COMPLETE,newShip);
delayTimer.start();
removeShipIcon();
shipsLeft--;

}

Shields Up!
A somewhat separate part of the ship is the shield. It exists as a movie clip inside of the
ship movie clip. So, to turn it on, we just need to set its visible property to true. A
timer is set to turn off the shield in three seconds. In the meantime, shieldOn will be set
to true, so any passing rock collisions will be ignored.

NOTE
The shield is actually a semitransparent graphic that allows the ship to be seen through
the shield. It has Alpha settings applied to the colors used in the gradient of the shield.
No ActionScript is needed for this; the graphic is just drawn this way.

The startShield function also does some checking at the start and the end of the func-
tion. At the beginning, it makes sure the player has some shields left. Then, it makes
sure the shield isn’t already on.

At the end, it checks the freeShield parameter. If false, we reduce the number of
available shields by one and update the screen:
// turn on shield for 3 seconds
public function startShield(freeShield:Boolean) {

if (shieldsLeft < 1) return; // no shields left
if (shieldOn) return; // shield already on

// turn on shield and set timer to turn off
ship.shield.visible = true;
shieldTimer = new Timer(3000,1);
shieldTimer.addEventListener(TimerEvent.TIMER_COMPLETE,endShield);
shieldTimer.start();

// update shields remaining
if (!freeShield) {

removeShieldIcon();
shieldsLeft--;

}
shieldOn = true;

}

Space Rocks 253

ptg

When the timer goes off, the shield is set back to invisible, and the shieldOne
Boolean is set to false:
// turn off shield
public function endShield(event:TimerEvent) {

ship.shield.visible = false;
shieldOn = false;

}

Rocks
Next come the functions to handle the rocks. We have functions to create rocks,
remove them, and destroy them.

Creating New Rocks
Rocks come in three sizes, so when newRock is called, it is with the parameter rockType
to specify the size of the new rock. At the start of the game, all the rocks are created
with "Big" as the size option. But, later in the game, we’ll be creating pairs of rocks
with every missile strike that use "Medium" and "Small" as the size.

For each size, we also have a corresponding rockRadius of 35, 20, and 10. We’ll be
using those numbers to detect collisions later on.

NOTE
It would be nice to get the radius numbers for each rock dynamically, by actually
checking the rock movie clips. But at this point, we haven’t created any yet, and so we
can’t get those values. But more important, we don’t really want those values. They
would include the farthest points in the graphics. We want a more modest number that
gives a better approximation of the general radius of the rocks.

To finish creating the rock, a random velocity is picked, by getting random values for dx
and dy. W also get a random value for dr, the rotation speed.

Another random element is the rock variation. Each movie clip has three frames, each
with a different-looking rock.

The rocks array is made up of data objects that include a reference to the rock movie
clip, the dx, dy, and dr values, the rockType (size) and the rockRadius:
// create a single rock of a specific size
public function newRock(x,y:int, rockType:String) {

// create appropriate new class
var newRock:MovieClip;
var rockRadius:Number;
if (rockType == "Big") {

newRock = new Rock_Big();
rockRadius = 35;

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop254

ptg

} else if (rockType == "Medium") {
newRock = new Rock_Medium();
rockRadius = 20;

} else if (rockType == "Small") {
newRock = new Rock_Small();
rockRadius = 10;

}

// choose a random look
newRock.gotoAndStop(Math.ceil(Math.random()*3));

// set start position
newRock.x = x;
newRock.y = y;

// set random movement and rotation
var dx:Number = Math.random()*2.0-1.0;
var dy:Number = Math.random()*2.0-1.0;
var dr:Number = Math.random();

// add to stage and to rocks list
gameObjects.addChild(newRock);
rocks.push({rock:newRock, dx:dx, dy:dy, dr:dr, rockType:rockType, rockRadius:

rockRadius});
}

Creating Waves of Rocks
At the start of the game, and with every new wave of rocks, the following function is
called to create four big rocks, all spaced evenly on the screen. Figure 7.12 shows the
positions at the exact start of the game.

Space Rocks 255

Figure 7.12
The four rocks are
placed 100 pixels
from the sides and
top and bottom of
the screen.

ptg

We want to set gameMode to play. If this is the first wave, we’ve already set the gameMode
to play. But if this is not the first wave, then the gameMode would have been set to delay
in the shipHit function. So we set it to play here to be sure:
// create four rocks
public function nextRockWave(event:TimerEvent) {

rocks = new Array();
newRock(100,100,"Big");
newRock(100,300,"Big");
newRock(450,100,"Big");
newRock(450,300,"Big");
gameMode = "play";

}

NOTE
The newRockWave function creates four rocks in the same place each time. You might
want to complicate this function by checking the gameLevel and perhaps using a six-
rock formation if the level is higher than three or four. That’s an easy way to add some
depth to the game. There’s also no reason that some medium and small rocks can’t be
placed at the start of a level.

Moving Rocks
To move the rocks, we just need to look at each rock and get the values in each object
of the rocks array. The position is changed according to the dx and dy values. The
rotation is changed according to the dr value.

As with the ship, we need to wrap the rocks from one side of the screen to the other.
The code to do this is almost the same, with the rocks being allowed to go 20 pixels
outside of the screen before wrapping back the width of the screen plus 40 pixels (20
for each side):
// animate all rocks
public function moveRocks(timeDiff:uint) {

for(var i:int=rocks.length-1;i>=0;i--) {

// move the rocks
var rockSpeed:Number = rockSpeedStart + rockSpeedIncrease*gameLevel;
rocks[i].rock.x += rocks[i].dx*timeDiff*rockSpeed;
rocks[i].rock.y += rocks[i].dy*timeDiff*rockSpeed;

// rotate rocks
rocks[i].rock.rotation += rocks[i].dr*timeDiff*rockSpeed;

// wrap rocks
if ((rocks[i].dx > 0) && (rocks[i].rock.x > 570)) {

rocks[i].rock.x -= 590;

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop256

ptg

}
if ((rocks[i].dx < 0) && (rocks[i].rock.x < -20)) {

rocks[i].rock.x += 590;
}
if ((rocks[i].dy > 0) && (rocks[i].rock.y > 420)) {

rocks[i].rock.y -= 440;
}
if ((rocks[i].dy < 0) && (rocks[i].rock.y < -20)) {

rocks[i].rock.y += 440;
}

}
}

Rock Collisions
When a rock is hit, the rockHit function decides what to do with it. In the case of a big
rock, two medium rocks are created in its place. In the case of a medium rock, two
small rocks are created. They start in the same location as the old rock, but get new
random directions and spins.

In either case, and if it is a small rock that is hit, the original rock is removed:
public function rockHit(rockNum:uint) {

// create two smaller rocks
if (rocks[rockNum].rockType == "Big") {

newRock(rocks[rockNum].rock.x,rocks[rockNum].rock.y,"Medium");
newRock(rocks[rockNum].rock.x,rocks[rockNum].rock.y,"Medium");

} else if (rocks[rockNum].rockType == "Medium") {
newRock(rocks[rockNum].rock.x,rocks[rockNum].rock.y,"Small");
newRock(rocks[rockNum].rock.x,rocks[rockNum].rock.y,"Small");

}
// remove original rock
gameObjects.removeChild(rocks[rockNum].rock);
rocks.splice(rockNum,1);

}

Missiles
Missiles are created when the player presses the spacebar. The newMissile function
uses the position of the ship to start the missile, and also takes the rotation of the ship
to determine the direction of the missile.

The placement of the missile isn’t at the center of the ship, however; it is one
shipRadius away from the center, using the same direction that the missile will continue
to travel. This prevents the missiles from appearing as if they originate from the center
of the ship.

Space Rocks 257

ptg

NOTE
A visual trick we are using here to simplify the missiles is to have the missile graphic be
a round ball. This way, we don’t need to rotate the missile in any specific angle. These
round objects look just fine moving in any direction.

We keep track of all missiles with the missiles array:
// create a new missile
public function newMissile() {

// create
var newMissile:Missile = new Missile();

// set direction
newMissile.dx = Math.cos(Math.PI*ship.rotation/180);
newMissile.dy = Math.sin(Math.PI*ship.rotation/180);

// placement
newMissile.x = ship.x + newMissile.dx*shipRadius;
newMissile.y = ship.y + newMissile.dy*shipRadius;

// add to stage and array
gameObjects.addChild(newMissile);
missiles.push(newMissile);

}

As the missiles move, we use the missileSpeed constant and the timeDiff to determine
the new location.

The missiles won’t wrap around the screen as the rocks and ship do, but instead simply
terminate when they go offscreen:
// animate missiles
public function moveMissiles(timeDiff:uint) {

for(var i:int=missiles.length-1;i>=0;i--) {
// move
missiles[i].x += missiles[i].dx*missileSpeed*timeDiff;
missiles[i].y += missiles[i].dy*missileSpeed*timeDiff;
// moved off screen
if ((missiles[i].x < 0) || (missiles[i].x > 550) ||

(missiles[i].y < 0) || (missiles[i].y > 400)) {
gameObjects.removeChild(missiles[i]);
missiles.splice(i,1);

}
}

}

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop258

ptg

When a missile hits a rock, it is also taken away with a call to missileHit:
// remove a missile
public function missileHit(missileNum:uint) {

gameObjects.removeChild(missiles[missileNum]);
missiles.splice(missileNum,1);

}

NOTE
The reason we remove the missiles in moveMissiles with separate code instead of call-
ing missileHit is just a consideration for the future. They are both happening under
different circumstances. If we want something special to happen when the missile hits
a target, we put it in missileHit. But, we probably wouldn’t want that to happen if
the missile just ran offscreen.

Game Control
So far, we’ve had three animation functions: moveShip, moveRocks, and moveMissiles.
All three of these are called by the primary animation function, moveGameObjects. In
turn, it is called by the ENTER_FRAME event we set up earlier.

Moving Game Objects
The moveGameObjects function calculates the timePassed like Air Raid did, and
then sends it to all three functions. Note that moveShip is only called if the gameMode is
not "delay".

Finally, moveGameObjects calls checkCollisions, which is the heart of the entire game:
public function moveGameObjects(event:Event) {

// get timer difference and animate
var timePassed:uint = getTimer() - lastTime;
lastTime += timePassed;
moveRocks(timePassed);
if (gameMode != "delay") {

moveShip(timePassed);
}
moveMissiles(timePassed);
checkCollisions();

}

Checking for Collisions
The checkCollisions function does the critical calculations. It loops through the rocks
and the missiles and checks for any that have collided with each other. The rockRadius
of the rocks is used to determine collisions. It is faster than calling hitTestPoint.

Space Rocks 259

ptg

If there is a collision, the rockHit and missileHit functions are called to take care of
both ends of the collision.

If a rock and a missile are to be removed at this point, it is important that neither be
looked at any more for possible collisions with other objects. So, each of the two nested
for loops have been given a label. A label is a way to specify which of the for loops a
break or continue command is meant for. In this case, we want to continue in the
rockloop, which is the outer of the nested loops. A simple break would mean that the
code would continue on to check the rock against a ship collision. But, because the
rock no longer exists, an error would occur:
// look for missiles colliding with rocks
public function checkCollisions() {

// loop through rocks
rockloop: for(var j:int=rocks.length-1;j>=0;j--) {

// loop through missiles
missileloop: for(var i:int=missiles.length-1;i>=0;i--) {

// collision detection
if (Point.distance(new Point(rocks[j].rock.x,rocks[j].rock.y),

new Point(missiles[i].x,missiles[i].y))
< rocks[j].rockRadius) {

// remove rock and missile
rockHit(j);
missileHit(i);

// add score
gameScore += 10;
updateScore();

// break out of this loop and continue next one
continue rockloop;

}
}

Each rock is checked to see whether it collides with the ship. First, we need to make
sure we aren’t in the time between the ship’s demise and its regeneration. We also need
to make sure the shield is down.

If the ship is hit, shipHit and rockHit are both called:
// check for rock hitting ship
if (gameMode == "play") {

if (shieldOn == false) { // only if shield is off
if (Point.distance(new Point(rocks[j].rock.x,rocks[j].rock.y),

new Point(ship.x,ship.y))
< rocks[j].rockRadius+shipRadius) {

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop260

ptg

// remove ship and rock
shipHit();
rockHit(j);

}
}

}
}

Before checkCollisions is done, it takes a quick look at the number of rocks on the
screen. If all have been wiped out, a timer is set up to start a new set in two seconds.
The gameLevel is upped by one, so the next rocks will be a bit faster. Also, the gameMode
is set to "betweenlevels". This means the check won’t be performed again until the
rocks reappear, but it still allows for ship movement by the player:

// all out of rocks, change game mode and trigger more
if ((rocks.length == 0) && (gameMode == "play")) {

gameMode = "betweenlevels";
gameLevel++; // advance a level
delayTimer = new Timer(2000,1);
delayTimer.addEventListener(TimerEvent.TIMER_COMPLETE,nextRockWave);
delayTimer.start();

}
}

Ending the Game
If the ship has been hit, and there are no more ships remaining, the game is over, and
endGame is called. It does the typical cleanup and sends the movie to the third frame on
the timeline:
public function endGame() {

// remove all objects and listeners
removeChild(gameObjects);
removeChild(scoreObjects);
gameObjects = null;
scoreObjects = null;
removeEventListener(Event.ENTER_FRAME,moveGameObjects);
stage.removeEventListener(KeyboardEvent.KEY_DOWN,keyDownFunction);
stage.removeEventListener(KeyboardEvent.KEY_UP,keyUpFunction);

gotoAndStop("gameover");
}

Modifying the Game
The shield feature in this game is actually not in the original Asteroids game. But, it can
be found in sequels and many other games of the genre. What is in the original is a
“warp” feature. This is where the ship disappears and reappears at a random location.

Space Rocks 261

ptg

Although this often leads to doom, it is a good last resort for players when they can’t
escape a tight spot.

Adding a warp feature is as easy as accepting a new key press in the keyDownFunction
and then assigning a random x and y value to the ship.

This game can benefit from some basics: like sound, or more animation. The thruster
flame can be animated by simply replacing the flame graphic with a looping graphic
symbol in the movie clip. No ActionScript necessary.

You could also add bonus lives, a common feature in these sorts of games. Just look for
key scoring goals, such as 1,000, and add to shipsLeft. You’ll want to redraw the ship
icons at that time, and perhaps play a sound to indicate the bonus.

Most games of this genre on the Web aren’t space games at all. This general concept
can be used in education or marketing by replacing the rocks with specific objects. For
instance, they could be nouns and verbs, and the player is supposed to only shoot the
nouns. Or they could be pieces of trash that you are supposed to be cleaning up.

A simple modification would be to forget about the missiles completely and make colli-
sions with the rocks and ship desirable. You could be gathering objects, in that case,
rather than shooting them. But, perhaps you want to gather some objects, and you
want to avoid others.

Balloon Pop
Source Files

http://flashgameu.com

A3GPU207_BalloonPop.zip

A modern variation on Air Raid II is a game where the bullets fly through the air and hit
one of several stationary objects. The objects form a pattern in the sky, and you have to
launch several volleys to remove them all.

This combines the physics of an Air Raid-type game with the levels of a puzzle game.
Usually, the player is presented with several levels of stationary objects, and they have
to destroy them all using as few shots as possible.

Let’s build a game that has several example levels and uses the same basic principles as
Air Raid II.

Game Elements and Design
The game elements are similar to those in Air Raid II. We have a cannon and a cannon
base. The first rotates; the second remains static. Then, we have a cannonball instead

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop262

http://flashgameu.com

ptg

of bullets. Instead of airplanes, we have balloons of different colors. We reuse the explo-
sion frames from the Air Raid airplanes and arrange the movie clip similarly.

Figure 7.13 shows the first level of the game; you can see the balloons in the sky, the
changes to make the gun into a cannon, and the cannonball flying through the air
above an exploding balloon.

Balloon Pop 263

Figure 7.13
The Balloon Pop
game uses a similar
set-up to the Air
Raid II game.

As for the ActionScript 3.0 design, we consolidate everything to a single class, instead
of using the separate classes for the bullets, gun, and airplanes, as we did for Air Raid.

As for the timeline, we need to do something different. We could use the intro, play,
and gameover frames as before, but this time we have multiple levels. The play frame
needs to know where to place the balloons on the screen.

We could do that all in code. A function could place each balloon in a location accord-
ing to an array of numbers for each level of the game, but that is difficult to set up. It is
much better to use the Flash stage and timeline to place the balloons using the Flash
graphics environment. So, we have three frames, one for each level. On each of those
three frames, we have all the balloons preplaced by dragging a copy of the Balloons
movie clip to locations on the screen.

The frame named level1 has the balloons in a simple rectangle. The frame level2
has them in a more circular arrangement. The frame level3 has them in two groups
of circles.

You could continue to create levels, one per frame. Dragging balloon movie clips is
easy, and you could use Flash drawing tools like the grid or guidelines to help with lay-
out. At some point, we have to figure out how to get these preplaced movie clips into
our game on the ActionScript side. You see how in a little bit.

ptg

Setting Up the Graphics
This game works exactly like Air Raid II in terms of the design of the movie clips. The
bullet is now a cannonball, and the gun turret is now a cannon.

In addition, the planes are different-colored balloons. They keep the same exact explo-
sion frames.

Even though the balloons are preplaced in the Flash interface, we still need to declare a
linkage classname for them. This is because we are looking for them by this classname
in our code.

Setting Up the Class
Another difference between Balloon Pop and Air Raid II is that we don’t need more
than one cannonball at a time. Instead of an array, we have a single reference to a
Cannonball object. We need an array for references to the balloons and also a set of
variables to hold the direction of travel for the cannonball:
package {

import flash.display.*;
import flash.events.*;
import flash.text.TextField;

public class BalloonPop extends MovieClip {

// display objects
private var balloons:Array;
private var cannonball:Cannonball;
private var cannonballDX, cannonballDY:Number;

We track the left and right arrow keys with these Boolean values:
// keys

private var leftArrow, rightArrow:Boolean;

Now, we have some game properties. Instead of a score, we just track the number of
cannonballs used. We have a property for the initial speed of the cannonballs as they fly
out of the cannon. We need to keep track of which level we are on, of course. And, we
need a constant for gravity:

// game properties
private var shotsUsed:int;
private var speed:Number;
private var gameLevel:int;
private const gravity:Number = .05;

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop264

ptg

Starting the Game
The Start button on the intro frame calls startBalloonPop. This sets the gameLevel and
shotsUsed. It then jumps the movie to frame level1 to get things started:
public function startBalloonPop() {

gameLevel = 1;
shotsUsed = 0;
speed = 6;
gotoAndStop("level1");

}

The game play starts with the startLevel function. If we had just one level, as we do
with most of the game we’ve seen so far, then the startGame and startLevel functions
are combined into one. Here we want to do some things when the game starts, like set-
ting the number of shorts used and some things when each level starts.

The startLevel function is called on each frame in the timeline. This assures that the
function runs after the frame has been drawn—so each of the balloons for the level is
in place.

The function starts by setting the score on the screen, then it calls a function named
findBalloons, and then sets the keyboard listeners and frame event listeners:
public function startLevel() {

showGameScore();

// create object arrays
findBalloons();

// listen for keyboard
stage.addEventListener(KeyboardEvent.KEY_DOWN,keyDownFunction);
stage.addEventListener(KeyboardEvent.KEY_UP,keyUpFunction);

// look for collisions
addEventListener(Event.ENTER_FRAME,gameEvents);

}

A great deal of work is going to be done by findBalloons, so let’s look at that next.

Preparing a Game Level
At the beginning of each level, after the movie has jumped to each level’s frame in the
timeline, we’ve got some work to do. Each of these level frames includes a set of bal-
loons. We need to know which movie clips are balloons and store them in an array for
collision detection and eventually removal.

To do this, we look through all the display objects on the screen using numChildren to
determine how many there are and getChildAt to examine each one.

Balloon Pop 265

ptg

NOTE
You can use the is comparison to determine if an object matches a class object. In this
example, (getChildAt(i) is Balloon) returns true if the display object is a Balloon
and false otherwise.

After we spot a movie clip that is a Balloon class object, we add it to our array. We also
take the opportunity to have that balloon jump to one of a random five frames, each
with a different color balloon graphic. This mixes up the colors on each level:
public function findBalloons() {

balloons = new Array();

// loop through all display objects
for(var i:int=0;i<numChildren;i++) {

// check to see if the object is a Balloon
if (getChildAt(i) is Balloon) {

// if it is, then go to a random balloon color
MovieClip(getChildAt(i)).gotoAndStop(Math.floor
(Math.random()*5)+1);

// add to our list of balloons
balloons.push(getChildAt(i));

}
}

}

Main Game Events
The gameEvents function is called every frame and dispenses calls to the three main
game functions:
public function gameEvents(event:Event) {

moveCannon();
moveCannonball();
checkForHits();

}

The direction the cannon points changes if one of the two arrow keys is held down. We
do that by getting the current rotation value of the cannon movie clip. Then, we add or
subtract one degree depending on the states of the arrow key Booleans:
public function moveCannon() {

var newRotation = cannon.rotation;

if (leftArrow) {

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop266

ptg

newRotation -= 1;
}

if (rightArrow) {
newRotation += 1;

}

We want to make sure that the cannon isn’t pointed in a counterproductive direction, so
we limit the rotation to between -90 and -20. The first is straight up, and the second is
pretty low to the ground. Then, we use this new value to set the rotation of the cannon:

// check boundaries
if (newRotation < -90) newRotation = -90;
if (newRotation > -20) newRotation = -20;

// reposition
cannon.rotation = newRotation;

}

Moving the cannonball is like moving the bullets, but we also need to take gravity into
account. So, we add that constant to cannonballDY each time. We also check to see if
the cannonball has passed the “ground” at the bottom of the screen.

We only run the code in this function if the cannonball is in play. When it isn’t there,
cannonball returns null because it has no object to point to. When we remove the can-
nonball, we set it to null:
public function moveCannonball() {

// only move the cannonball if it exists
if (cannonball != null) {

// change position
cannonball.x += cannonballDX;
cannonball.y += cannonballDY;

// add pull of gravity
cannonballDY += gravity;

// see if the ball hit the ground
if (cannonball.y > 340) {

removeChild(cannonball);
cannonball = null;

}
}

}

Balloon Pop 267

ptg

The last thing the main game function does is call checkForHits. This function loops
through all the balloons and tests each one for a collision with the cannonball. It only
does this if the cannonball exists.

If a hit is detected, the balloon is then told to play the explosion animation sequence. It
is at the end of this sequence that the balloon removes itself from game play. We look
at that in a bit:
// check for collisions
public function checkForHits() {

if (cannonball != null) {

// loop through all balloons
for (var i:int=balloons.length-1;i>=0;i--) {

// see if it is touching the cannonball
if (cannonball.hitTestObject(balloons[i])) {

balloons[i].gotoAndPlay("explode");
break;

}
}

}
}

Player Controls
The functions that set the keyboard Boolean values are almost identical to those in Air
Raid II. The only difference is the spacebar, key code 32, calls fireCannon:
// key pressed
public function keyDownFunction(event:KeyboardEvent) {

if (event.keyCode == 37) {
leftArrow = true;

} else if (event.keyCode == 39) {
rightArrow = true;

} else if (event.keyCode == 32) {
fireCannon();

}
}

// key lifted
public function keyUpFunction(event:KeyboardEvent) {

if (event.keyCode == 37) {
leftArrow = false;

} else if (event.keyCode == 39) {
rightArrow = false;

}
}

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop268

ptg

The fireCannon function records that a shot was used and updates the display. It then
creates a new cannonball and sets its location to that of the cannon itself.

NOTE
At the beginning of fireCannon a check is made to make sure that cannonball exists. If
it does, then the return command aborts the rest of the function. In this game, we’ve
seen two ways to exclude code based on the existence of a movie clip. The first, in
moveCannonball and checkForHits, is to enclose all the function’s code in a big
if…then statement. The second is to use return to abort the function. The first works
well for short functions, and the second is better for longer functions. Both are merely
a programming style choice.

When a cannonball is created, it must be behind the cannon, so it appears to fire out of
it. Using addChild places the cannonball on top of the cannon. So, addChild is used
again to jump the cannon movie clip on top. That places it above the cannonbase, so
addChild is used a third time to move the cannonbase to the top:
public function fireCannon() {

if (cannonball != null) return;

shotsUsed++;
showGameScore();

// create cannonball
cannonball = new Cannonball();
cannonball.x = cannon.x;
cannonball.y = cannon.y;
addChild(cannonball);

// move cannon and base above ball
addChild(cannon);
addChild(cannonbase);

// set direction for cannonball
cannonballDX = speed*Math.cos(2*Math.PI*cannon.rotation/360);
cannonballDY = speed*Math.sin(2*Math.PI*cannon.rotation/360);

}

The fireCannon function ends by assigning values to cannonballDX and cannonballDY
to give the cannonball a velocity according to the angle of the cannon and the
speed constant.

Balloon Pop 269

ptg

Popping Balloons
At the end of the explosion animation sequence for the balloons, there is a call back to
the main class so the balloon can ask to be removed from the game. It looks like this in
the timeline frame script:
MovieClip(root).balloonDone(this);

The balloonDone function removes the balloon from the screen, and then loops through
the balloons array to remove it from there as well. It ends by checking the array to see
if it is empty. If so, then the level is over and either endLevel or endGame must be called:
// balloons call back to here to get removed
public function balloonDone(thisBalloon:MovieClip) {

// remove from screen
removeChild(thisBalloon);

// find in array and remove
for(var i:int=0;i<balloons.length;i++) {

if (balloons[i] == thisBalloon) {
balloons.splice(i,1);
break;

}
}

// see if all balloons are gone
if (balloons.length == 0) {

cleanUp();
if (gameLevel == 3) {

endGame();
} else {

endLevel();
}

}
}

Ending Levels and the Game
You notice that balloonDone also calls cleanUp when a level or the game is over. This
function is where all the loose ends of gameplay get tied up. The event listeners are
stopped and the cannon, cannonbase, and cannonball are removed. No need to worry
about the balloons; they would all have to be gone for the game to reach this point:
// stop the game
public function cleanUp() {

// stop all events
stage.removeEventListener(KeyboardEvent.KEY_DOWN,keyDownFunction);

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop270

ptg

stage.removeEventListener(KeyboardEvent.KEY_UP,keyUpFunction);
removeEventListener(Event.ENTER_FRAME,gameEvents);

// remove the cannonball
if (cannonball != null) {

removeChild(cannonball);
cannonball = null;

}

// remove the cannon
removeChild(cannon);
removeChild(cannonbase);

}

The endLevel and endGame functions merely jump the movie to another frame. You
could almost do away with both of these and put the gotoAndStop calls right inside
balloonDone. But I like the idea of setting these up in their own functions, so you can
put more code here if you expand the game later:
public function endLevel() {

gotoAndStop("levelover");
}

public function endGame() {
gotoAndStop("gameover");

}

When a level is over and the game is waiting on the levelover frame, the button there
needs to advance the player to the next level and then kick off gameplay again:
public function clickNextLevel(e:MouseEvent) {

gameLevel++;
gotoAndStop("level"+gameLevel);

}

One more function in the class is the showGameScore function. Though it has the same
name as the Air Raid II function, it is actually showing the number of shots taken:
public function showGameScore() {

showScore.text = String("Shots: "+shotsUsed);
}

Timeline Scripts
We’ve already seen that the balloons need a call to balloonDone in the last frame of
their timeline. We also need some more calls in the main timeline.

Balloon Pop 271

ptg

Each of the three level frames needs a call to startLevel:
startLevel();

Also, the intro frame needs to have the button set up to start the game:
stop();
startButton.addEventListener(MouseEvent.CLICK,clickStart);
function clickStart(event:MouseEvent) {

startBalloonPop();
}

Similarly, the levelover frame needs to set its button to call to clickNextLevel in the
main class:
nextLevelButton.addEventListener(MouseEvent.CLICK,clickNextLevel);

Finally, the gameover frame needs a button script, too:
playAgainButton.addEventListener(MouseEvent.CLICK,playAgainClick);
function playAgainClick(e:MouseEvent) {

gotoAndStop("intro");
}

Modifying the Game
This is another one of those games that can be used for a lot of different purposes. You
could replace the balloons, as well as the cannon, with any object. You can also animate
either one in the movie clip without adding any additional code. It would be fun to see a
flailing circus clown get shot out of the cannon, for instance.

Of course, you could add more levels easily enough. Add as many as you like, with
interesting challenges for a player, like trying to use as few cannonballs as possible.

Notice that the speed variable is not a constant. It certainly can be because it is set at 6
and then never changed. One way it can be used with different values is to reassign it a
value on each level frame. On levels 1 to 10, it might be 6, but then on level 11 it
could change to a 7, with a corresponding change to a larger cannon graphic to repre-
sent a more powerful cannon.

Another variation could include some balloons or other objects that stop the cannonball.
If the cannonball hits the objects, the ball’s journey is over, and the object acts as pro-
tection for the other balloons. These new elements could persist, or they could be
destroyed with the first hit. This adds another layer of strategy to future levels.

Chapter 7: Direction and Movement: Air Raid II, Space Rocks, and Balloon Pop272

