Gasual Games: Match
Three and Gollapsing
Blocks

Reusable Class: Point Bursts
Match Three
Collapsing Blocks

274 Chapter 8: Casual Games: Match Three and Collapsing Blocks

In the beginning, video games were simple and fun. Little action puzzle games such as
Tetris were the most popular. Then, 3D graphics pushed the edge of gaming into the
virtual worlds of first-person shooters and online role-playing games.

However, puzzle games regained popularity in the early part of the last decade as online
free and downloadable games. These are usually called casual games.

NOTE

There is a lot of confusion over the term casual game. Wikipedia defines it as “a cate-
gory of electronic or computer games targeted at a mass audience.” This is a pretty
broad definition. A narrow one is simply “Match Three games,” because most websites
that sold “casual games” sold mostly Match Three games.

However, many of the games in this book fit the wider definition. In fact, many pic-
ture-puzzle and word-puzzle games are sold alongside Match Three.

Most casual games are action puzzle games, meaning they combine a puzzle game with
some sort of movement or a time limit to elevate the level of excitement.

This chapter starts by taking a look at point bursts, a popular special effect used in
casual games. Then, we go on to build a typical Match Three game, and then another
popular puzzle game genre in Collapsing Blocks.

Reusable Class: Point Bursts

Source Files
http://flashgameu.com
A3GPU208_PointBurst.zip

In the old days of arcade games, you were awarded points when you did something
right. That hasn’t changed. But, what has changed is the standard way of indicating it.

In the old arcade games, you would simply see your score change in a corner of the
screen. Chances are you weren’t watching this corner of the screen at the time, and
wouldn’t look at it until the action was over. So, it makes sense that games evolved to
show you how many points you received right at the location of the screen where your
action took place.

Check almost any well-built casual game and you’ll see this. Figure 8.1 shows my game
Gold Strike right at the moment that the player clicks some gold blocks to score points.
You can see the “30” text in the location where the gold blocks used to be. These num-
bers grow from small to large in an instant and then disappear. They are there just long
enough to show players how many points they have scored.

http://flashgameu.com

Reusable Class: Point Bursts 275

Figure 8. 1 ane goldstrike.swf
The number of
points scored shows
up right at the spot
where the action
occurred.

[call this special effect a point burst. It is so common, and I use it so frequently, that it
is an ideal candidate for a special class that can be built and then reused in many games.

Developing the Point Burst Class

The PointBurst.as class should be as self-contained as possible. In fact, our goal is to
be able to use a point burst with only one line of code in the game. So, the class itself
needs to take care of creating the text and sprite, animating it, and removing itself com-
pletely when done.

NOTE

Not only will our PointBurst class need just one line of code to use, but it will
not require any items in the main movie’s library other than a font to use in the
point burst.

Figure 8.2 shows a time-lapse version of what we are going for. The point burst should
start small, and then grow in size. It should also start at 100 percent opacity and fade
away to become transparent. And, it should do this in less than a second.

Figure 8.2 i N P
This time-lapse] = @ 100 100 100
image shows the
start of the point
burst at the left,
and then each stage
of the animation
from left to right.

276

Chapter 8: Casual Games: Match Three and Collapsing Blocks

The Class Definition

For such a small class, we still need four imports. We'll be using the timer to control the
animation of the point burst, although another option is to make it time based using
ENTER_FRAME events:
package {

import flash.display.*;

import flash.events.*;

import flash.text.*;

import flash.utils.Timer;

Even though the PointBurst class is performing animation, it is still a sprite, because it
doesn’t require multiple frames. Instead, we’ll be scaling and setting the alpha of the
sprite in each time step.

We will use static constants to decide the font type, size, and color:
public class PointBurst extends sprite {
/] text style
static const fontFace:String = "Arial";
static const fontSize:int = 20;
static const fontBold:Boolean = true;
static const fontColor:Number = OXFFFFFF;

We also have several constants associated with the animation. The animSteps and
animStepTime determine the length and smoothness of the animation. For instance, at
10 steps, with 50 milliseconds between steps, it takes 500 milliseconds to animate; 20
steps at 25 milliseconds between steps also takes 500 milliseconds, but includes twice
as many steps for smoother animation:

/] animation

static const animSteps:int = 10;

static const animStepTime:int = 50;

The scale of the movie changes during the animation. These two constants set the start-
ing point and ending point of the change in scale:

static const startScale:Number = 0;
static const endScale:Number = 2.0;

After the constants, we have several variables to hold references to the items in the
point burst. One holds the text field, and another the Sprite that will encapsulate the
text field. A third holds a reference to the stage or movie clip where we want to place
the point burst. The last holds a reference to the Timer object:

private var tField:TextField;

private var burstSprite:Sprite;

private var parentMC:MovieClip;

private var animTimer:Timer;

Reusable Class: Point Bursts 277

The PointBurst Function

The one line of code we use to create a PointBurst is to create a new PointBurst
object. This in turn calls the PointBurst function, which accepts parameters. These
parameters are our only way to communicate to the PointBurst object some key infor-
mation, such as the location of the point burst and what text to display.

A~ NOTE

The pts parameter is an Object because we want to be able to accept any kind of
variable type: int, Number, or String. We'll convert whatever it is to a String later,
because that is what the text property of a TextField requires.

The first parameter of PointBurst is a movie clip, mc. This will be a reference to the
stage or another movie clip or sprite where the point burst will be added with addchild:

public function PointBurst(mc:MovieClip, pts:Object, Xx,y:Number) {

The first thing the function must do is to create a TextFormat object to assign to the
TextField we'll create later. This will include use of the formatting constants we defined
earlier. It will also set the alignment of the field to "center":

/] create text format

var tFormat:TextFormat = new TextFormat();
tFormat.font = fontFace;

tFormat.size = fontSize;

tFormat.bold = fontBold;

tFormat.color = fontColor;

tFormat.align = "center";

Next, we create the TextField itself. In addition to turning selectable to false, we also
need to tell the field to use embedded fonts rather than system fonts. This is because we
want to set the transparency of the text, something that can only be done when the text
uses embedded fonts.

To get the text to be centered in the sprite we'll create next, we set the autoSize of the
field to TextFieldAutoSize.CENTER. Then, we set the x and y properties to negative half
of the width and height. This puts the center of the text at point 0,0:

// create text field

tField = new TextField();

tField.embedFonts = true;

tField.selectable = false;
tField.defaultTextFormat = tFormat;
tField.autoSize = TextFieldAutoSize.CENTER;
tField.text = String(pts);

tField.x = -(tField.width/2);

tField.y = -(tField.height/2);

278

Chapter 8: Casual Games: Match Three and Collapsing Blocks

Now we create a sprite to hold the text and act as the main display object for the anima-
tion. We set the location of this sprite to the x and y values passed into the function. We
set the scale of the sprite to the startScale constant. We set the alpha to zero. Then,
we add the sprite to the mc movie clip, which is the sprite passed in to the function:

/| create sprite

burstSprite = new Sprite();
burstSprite.x = Xx;

burstSprite.y = vy;
burstSprite.scaleX = startScale;
burstSprite.scaleY = startScale;
burstSprite.alpha = 0;
burstSprite.addChild(tField);
parentMC = mc;

parentMC.addChild (burstSprite);

Now that the PointBurst object has manifested itself as a sprite, we just need to start a
timer to control the animation over the next 500 milliseconds. This timer calls
rescaleBurst several times, and then calls removeBurst when it is done:
// start animation
animTimer = new Timer(animStepTime,animSteps);
animTimer.addEventListener(TimerEvent.TIMER, rescaleBurst);
animTimer.addEventListener(TimerEvent.TIMER_COMPLETE, removeBurst);
animTimer.start();

Animating the Point Burst

When the Timer calls rescaleBurst, we need to set the scale properties and the alpha
of the sprite. First, we calculate percentbone based on how many Timer steps have gone
by and the total number of animSteps. Then, we apply this value to the startScale and
endScale constants to get the current scale. We can use percentDone to set the alpha,
but we want to invert the value so that the alpha goes from 1.0 to 0.0.

NOTE

The alpha property sets the transparency of a sprite or movie clip. At 1.0, the object
behaves as normal, filling in solid colors at 100 percent opacity. This still means that
unfilled areas, like those outside the shape of the characters, are transparent. At .5, or
50 percent transparency, the areas that are usually opaque, like the lines and fills of
the characters, share the pixels with the colors behind them.

/] animate
public function rescaleBurst(event:TimerEvent) {
// how far along are we
var percentDone:Number = event.target.currentCount/animSteps;

Reusable Class: Point Bursts 279

/] set scale and alpha

burstSprite.scaleX = (1.0-percentDone)*startScale + percentDone*endScale;
burstSprite.scaleY = (1.0-percentDone)*startScale + percentDone*endScale;
burstSprite.alpha = 1.0-percentDone;

}

When the Timer is done, it will call removeBurst. This takes care of everything needed
for the PointBurst to get rid of itself, without any action on the part of the main movie
or the movie’s class.

After removing the tField from the burstSprite, the burstSprite is removed from the
parentMC. Then, both are set to null to clear them from memory. Finally, delete is
used to clear the PointBurst object away completely.

A NOTE

It is unclear whether you need all the lines in removeBurst. You are supposed to clear
away all references to an object to delete it. But, the delete statement removes the
PointBurst, which in turn should also remove the two variables. Removing the
burstSprite may also serve to remove the tField. There is no way to test this, and at
the time of this writing, there doesn’t seem to be any technical document that tells us
what the Flash player does in this case, specifically. So, it is best to use a function that
ensures all of this is cleared.

// all done, remove self

public function removeBurst(event:TimerEvent) {
burstSprite.removeChild(tField);
parentMC.removeChild (burstSprite);
tField = null;
burstSprite = null;
delete this;

}

Using Point Bursts in a Movie

You need to do two things before creating a new PointBurst object in a movie. The
first is to create a Font object in the movie’s library. The second is to tell Flash where to
look to find your PointBurst.as file.

Adding a Font to a Movie

The reason a Font is needed is because we are using alpha to adjust the transparency of
the text. This can only be done with an embedded Font in the library.

To create an embedded Font, you need to use the Library panel’s drop-down menu and
choose New Font. Then, add the font, making sure to add the font “Arial” on the left
side, and then select “Basic Latin” to include the 95 basic characters. Figure 8.3 shows
the Font Embedding dialog box, which can be tricky to work with. Now would be a
good time to play with the dialog and fight with the controls to add the font.

Chapter 8: Casual Games: Match Three and Collapsing Blocks

Figure 8.3 by
The Font Embedding |, .. - _~_.~|'
dialog you choose a b '
font to add to the
library.

\\\\\\\\\\\

But, this is only step one. Step two, which is not obvious at all, is to make sure this font
is included for ActionScript use. To do this, you can simply click the ActionScript tab in
the same Font Embedding dialog and then check off Export for ActionScript and name
the class, as shown in figure 8.4. Or, you could skip that step and give the font a
Linkage name in the Library panel just like you would for a movie clip or sound that
you planned to use in your code.

Figure 8.4 e
Within the Font =] [ovtmten
Embedding dialog, :
you can specify a
class for a font in o,
the library.

Class Locations

For our examples, we don’t need to do anything to tell Flash where to look to find out
PointBurst.as class file. This is because it is in the same location as the Flash movie.

But, if you want to use the same PointBurst.as class file in multiple projects, you need
to locate it somewhere where all the project movies can get to it, and then tell them
where to find it.

There are two ways to do this. The first is to add a class path to the Flash preferences.
You might want to create a folder to hold all the classes you regularly use. Then, go to
the Flash Preferences, ActionScript section. There, you can click the ActionScript 3.0

Settings button and add a folder to the place where Flash looks for class files.

Reusable Class: Point Bursts 281

/ s NOTE
w

Alternatively, you could just use the default location for library classes, the Flash
Classes folder, which is in your Flash folder in the Program Files or Applications folder.
[don'’t like doing this because I try to keep any of the documents I create out of the
Applications folder, leaving only the default install of my applications there.

A second way to tell a movie to find a class file not in the same directory as the movie
is to go to File, Publish Settings and click the Settings button next to the ActionScript
version selection. Then, you can add a new class path for only this one movie.

To summarize, here are the four ways a Flash movie can access a class file:

1. Place the class file in the same folder as the movie.

2. Add the class location in the Flash Preferences.

3. Place the class file in the Flash application Class folder.
4. Add the class location in the movie’s Publish Settings.

Creating a Point Burst

After you have the font in the library, and the movie has access to the class, it just takes
one line to make a point burst. Here is an example:

var pb:PointBurst = new PointBurst(this,100,50,75);

This creates a point burst with the number 100 displayed. The burst will appear at loca-
tion 50,75.

The example movie PointBurstExample.fla and its accompanying
PointBurstExample.as class present a slightly more advanced example. It creates a
point burst wherever you click:
package {
import flash.display.*;
import flash.events.*;

public class PointBurstExample extends MovieClip {

public function PointBurstExample() {
stage.addEventListener (MouseEvent.CLICK,tryPointBurst);
}

public function tryPointBurst(event:MouseEvent) {
var pb:PointBurst = new PointBurst(this,100,mouseX,mouseY);

}

282 Chapter 8: Casual Games: Match Three and Collapsing Blocks

Now that we have an independent piece of code that takes care of this somewhat com-
plex special effect, we can move on to our next game knowing that it can include the
point burst with almost no additional programming effort.

Match Three

Source Files
http://flashgameu.com
A3GPU208_MatchThree.zip

Although Match Three is the most common and popular casual game, it didn’t get that
way because it was easy to program. In fact, many aspects of Match Three require
some very tricky techniques. We'll look at the game piece by piece.

Playing Match Three

In case you have been successful in avoiding Match Three games over the past few
years, here is how they are played.

An eight-by-eight board holds a random arrangement of six or seven game pieces. You
can click any two horizontally or vertically adjacent pieces two try to swap them. If the
swap results in a horizontal or vertical lineup of three or more of the same types of
pieces, the swap is allowed. The pieces that line up are then removed, with pieces above
them dropping down. More pieces drop from above to fill the gap left by the match.

That’s it. It is the simplicity of the game that is part of what makes it popular. The
game continues until the board reaches a state where no more moves are possible.

Figure 8.5 shows my game Newton'’s Nightmare, a fairly typical Match Three game.

Figure 8.5

Newton’s Nightmare ‘
ot X X @ X

features apples as - -5

the playing pieces in L L | [

a Match Three game. X Xt PP

s " M 2sr et

r r - Ay r r(.-,
. r r._vw_'

SCORE: O

vl GNCA Highest Scoring Turm: 0
Most Matches Per Turm: 0
Longest Match: 0

Gopyright Clovarhiodia

- l"*"t O
",‘p X

http://flashgameu.com

Match Three 283

/ s NOTE
~ /

The game Bejeweled, also named Diamond Mine, is credited with kicking off the
Match Three craze.

Game Functionality Overview

The sequence of events in the game follows 12 steps. Each step presents a different
programming challenge.

1. Create a Random Board

An eight-by-eight board with a random arrangement of seven different items is created
to start the game.

2. Check for Matches

There are some restrictions on what the initial board can hold. The first is that the board
can include no three-in-a-row matches. It must be up to the player to find the first match.

3. Check for Moves

The second restriction on the initial board is that there must be at least one valid move.
That means the player must be able to swap two pieces and create a match.

4. Player Selects Two Pieces

The pieces must be adjacent to each other horizontally or vertically, and the swap must
result in a match.

5. The Pieces Are Swapped

Usually an animation shows the two pieces moving into each others’ places.

6. Look for Matches

After a swap is made, the board should be searched for new matches of three in a row
or more. If no match is found, the swap needs to be reversed.

7. Award Points
If a match is found, points should be awarded.

8. Remove Matches
The pieces involved in a match should be removed from the board.

284

Chapter 8: Casual Games: Match Three and Collapsing Blocks

9. Drop Down

The pieces above the ones removed need to drop down to fill the space.

10. Add New

New pieces need to drop down from above the board to fill in empty spaces.

11. Look for Matches Again

After all pieces have dropped and new ones have filled in the gaps, another search for
matches is needed. Back to step 6.

12. Check for No More Moves

Before giving control back to the player, a check is made to see whether any moves are
possible at all. If not, the game is over.

The Movie and MatchThree Class

The MatchThree.fla movie is pretty simple. Besides the Arial font in the library, the
only game-related elements are a movie clip for the game pieces, and another clip that
acts as a selection indicator.

Figure 8.6 shows the Piece movie clip. There are seven frames, each with a different
piece. There is also the select movie clip on the top layer, across all seven frames. This
can be turned on or off using the visible property.

Figure 8.6 ‘ﬂ‘mﬂ DI__I —

The Piece movie o '
clip contains seven o
variations and a

selection box.

=R (AR 1) G501 00% [
(55 MatehThrmeas)| 0 MarehThrerdla" | |
& scene 1 1] mece 3 7268 0]

Match Three 285

Let’s get the class definitions out of the way before looking at the game logic.
Surprisingly, there isn’t too much to define. Only the most basic imports are needed:
package {
import flash.display.*;
import flash.events.*;
import flash.text.*;
import flash.utils.Timer;

As for constants, we just have some for the number of variations for the Piece, and
three constants that have to do with screen display position:
public class MatchThree extends MovieClip {

/] constants

static const numPieces:uint = 7;

static const spacing:Number = 45;

static const offsetX:Number = 120;

static const offsetY:Number = 30;

The game state will be stored in five different variables. The first, grid, contains refer-
ences to all the Pieces. It is actually an array of arrays. So, each item in grid is actually
another array containing eight Piece movie clip references. So, it is an eight-by-eight
nested array. Then, we can look at any Piece by simply using grid[x][y].

The gameSprite is a sprite that holds all the sprites and movie clips we’ll be creating.
This keeps them separate from any other graphics already on the stage.

The firstPiece variable holds a reference to the first Piece clicked, much like the
matching game did in Chapter 3, “Basic Game Framework: A Matching Game.”

The two Boolean variables, isbropping and isSwapping, keep track of whether any
Pieces are animating at the moment. The gameScore variable holds the player’s score:

// game grid and mode

private var grid:Array;

private var gameSprite:Sprite;

private var firstPiece:Piece;

private var isDropping,isSwapping:Boolean;

private var gameScore:int;

Setting Up the Grid

The first functions will set the game variables, including setting up the game grid.

Setting the Game Variables

To start the game, we need to set all the game state variables. We start by creating the
grid array of arrays. Then, we call setUpGrid to populate it.

286

Chapter 8: Casual Games: Match Three and Collapsing Blocks

NOTE

There is no need to fill the internal arrays of grid with empty slots. Just by setting a
location in an array, the slot in the array is created, and any earlier slots are filled
with undefined. For instance, if a new array is created, and then item three is set to
"My String", the array will have a length of 3, and items 0 and 1 will have a value
of undefined.

Then, we set the isDropping, isSwapping, and gameScore variables. Also, we set up an
ENTER_FRAME listener to run all the movement in the game:

// set up grid and start game
public function startMatchThree() {

/| create grid array

grid = new Array();

for(var gridrows:int=0;gridrows<8;gridrows++) {
grid.push(new Array());

}

setUpGrid();

isDropping = false;

isSwapping = false;

gameScore = 0;

addEventListener (Event.ENTER_FRAME,movePieces);

Setting Up the Grid

To set up the grid, we begin an endless loop using a while(true) statement. Then, we
create the items in the grid. We plan on the very first attempt creating a valid board.

A new gameSprite is created to hold the movie clips for the game Pieces. Then, 64
random Pieces are created through the addPiece function. We look at this function
next, but for now you should know that it will add a Piece to the grid array and also to
the gameSprite:

public function setUpGrid() {

/] loop until valid starting grid
while (true) {

/| create sprite

gameSprite = new Sprite();

// add 64 random pieces
for(var col:int=0;co0l<8;col++) {
for(var row:int=0;row<8;row++) {
addPiece(col,row);

Match Three 287

Next, we've got to check two things to determine whether the grid that is created is a
valid starting point. The lookForMatches function returns an array of matches found.
We’'ll look at it later in this chapter. At this point, it needs to return zero, which means
that there are no matches on the screen. A continue command skips the rest of the
while loop and starts again by creating a new grid.

After that, we call 1lookForPossibles, which checks for any matches that are just one
move away. If it returns false, this isn’t a good starting point because the game is
already over.

If neither of these conditions are met, the break command allows the program to leave
the while loop. Then, we add the gameSprite to the stage:

/] try again if matches are present
if (lookForMatches().length != @) continue;

/] try again if no possible moves
if (lookForPossibles() == false) continue;

// no matches, but possibles exist: good board found
break;

// add sprite
addChild(gameSprite);

Adding Game Pieces

The addPiece function creates a random Piece at a column and row location. It creates
the movie clip and set its location:
/| create a random piece, add to sprite and grid
public function addPiece(col,row:int):Piece {
var newPiece:Piece = new Piece();
newPiece.x = col*spacing+offsetX;
newPiece.y = row*spacing+offsetY;

Each Piece needs to keep track of its own location of the board. Two dynamic
properties, col and row, will be set to this purpose. Also, type holds the number corre-
sponding to the type of Piece, which also corresponds to the frame in the movie clip
being shown:

newPiece.col = col;

newPiece.row = row;

newPiece.type = Math.ceil(Math.random()*7);

newPiece.gotoAndStop (newPiece.type);

288

Chapter 8: Casual Games: Match Three and Collapsing Blocks

The select movie clip inside the Piece movie clip is the outline that appears when the
user clicks a Piece. We'll set that to not be visible at the start. Then, the pPiece will be

added to the gameSprite.

To put the Piece into the grid array, we use a double-bracket method of addressing the
nested array: grid[col][row] = newPiece.

Each Piece is given its own click listener. Then, the reference to the Piece is returned.
We won'’t be using it in the setUpGrid function above, but we will be using it later on
when creating new Pieces to replace matched ones:

newPiece.select.visible = false;

gameSprite.addChild(newPiece);

grid[col][row] = newPiece;

newPiece.addEventListener (MouseEvent.CLICK,clickPiece);

return newPiece;

}

Figure 8.7 shows a complete random valid grid.

Figure 8.7 . Yale MatchThrea.swt
Just one of a nearly
infinite number of
randomly generated
game grids.

Player Interaction

When the player clicks a Piece, what happens depends on whether it is the first
Piece clicked, or the second. If it is the first Piece, the Piece is selected, and nothing
else happens.

If the player clicks the same Piece twice, it is deselected and the player is back to
square one:

// player clicks a piece
public function clickPiece(event:MouseEvent) {
var piece:Piece = Piece(event.currentTarget);

Match Three 289

/] first one selected

if (firstPiece == null) {
piece.select.visible = true;
firstPiece = piece;

// clicked on first piece again

} else if (firstPiece == piece) {
piece.select.visible = false;
firstPiece = null;

If the player has clicked a second Piece, we need to determine whether there can be a
swap. First, we turn off the selection highlight on the first Piece.

The first test is to determine whether the two Pieces are on the same row, and next to
each other. Alternatively, the Pieces can be on the same column, and above or below
the other.

In either case, makeSwap is called. This takes care of checking to see whether a swap is
valid—that it will result in a match. If it is, or if it isn’t, the firstPiece variable is set to
null to get ready for the next player selection.

On the other hand, if the player has selected a Piece farther away from the first, it
is assumed that the player wants to abandon his first selection and start selecting a
second pair:

// clicked second piece
} else {
firstPiece.select.visible = false;

// same row, one column over

if ((firstPiece.row == piece.row) && (Math.abs(firstPiece.col-piece.col) ==
1)) |
makeSwap (firstPiece,piece);
firstPiece = null;

// same column, one row over

} else if ((firstPiece.col == piece.col) && (Math.abs(firstPiece.row-piece.row)
= 1)) {
makeSwap (firstPiece,piece);
firstPiece = null;

// bad move, reassign first piece

} else {
firstPiece = piece;
firstPiece.select.visible = true;

290 Chapter 8: Casual Games: Match Three and Collapsing Blocks

The makeSwap function swaps the two Pieces, and then checks to see whether a match
is available. If not, it swaps the Pieces back. Otherwise, the isSwapping variable is set to
true so that the animation can play:

// start animated swap of two pieces

public function makeSwap(piecel,piece2:Piece) {
swapPieces(piecel,piece2);

/] check to see if move was fruitful

if (lookForMatches().length ==
swapPieces(piecel,piece2);

} else {

isSwapping = true;

To actually do the swapping, we need to store the location of the first Piece in a tem-
porary variable. Then, we’ll set the location of the first Piece to the location of the sec-

) A

ond. Figure 8.8 shows a diagram of how a swap like this works.

Figure 8.8
When swapping
two values, it is

necessary to create

a temporary vari-
able that stores
one value during
the swap.

When the locations of the Pieces are exchanged, the grid needs to be updated. Because
each Piece now has the correct row and col value, we just set the grid to point to each

[N
. . Temporary
Piece 1 Piece 2 Storage
e |
. . Temporary
Piece 1 Piece 2 Storage
N2 l
Piece 1 Piece 2 Temparary
Storage

Piece at the correct position inside of grid:

// swap two pieces
public function swapPieces(piecel,piece2:Piece) {
// swap row and col values

var tempCol:uint = piecel.col;
var tempRow:uint = piecel.row;

piecel.col
piecel.row
piece2.col
piece2.row

// swap grid positions

piece2.col;
piece2.row;

tempCol;
tempRow;

Match Three 291

grid[piecel.col][piecel.row] = piecel;
grid[piece2.col][piece2.row] = piece2;

}

The swap is completely reversible, which is important because it will often need to be
reversed. In fact, we don’t know whether the swap leads to a match until after the swap
is performed. So, we often need to swap the Pieces, check for a match, and then swap
back if no match is found.

Animating Piece Movement

We’re going to be using an interesting, but non-obvious, method of animating Piece
movement. Each Piece knows what row and col it is in because it has a row and col
dynamic property. It also knows what location it is in on the screen thanks to its x
and y property.

These two should match, with help from the spacing, and offsetX and offsetY vari-
ables. So, a Piece in column 3 should be at an x location of 3*spacing+offsetX.

But, what if a Piece moves to a new column? If we set the col value of the Piece to 4,
it should be at 4*spacing+offsetX, which is spacing (45) pixels to the right. In that case,
we can ask the Piece to move a bit to the right, to get closer to its new location. If we
do this each frame, the Piece eventually gets to its new destination, and stops moving
(because it will again have a matching col and x value).

Using this technique, we can have any Piece animate as it moves to a new location.
And we don’t even need to set up this animation on a per-piece level. All we need to
do is change a col or row property of a Piece, and then the following function will take
care of the rest.

The movePieces function is called every ENTER_FRAME as we set it up with a listener at
the start of the class. It loops through the Pieces and checks all the col and row values
to see whether the x and y values need adjusting to match.

NOTE

We’re using a distance of 5 in movePieces each frame. For the col and row to line up
with an x and y value, we need to stick to multiples of 5 for spacing. In the example
movie, spacing is set to 45, so this works. If you were to change spacing to, say 48,
you need to choose a new movement amount that divides evenly into 48, like 4, 6, or 8.

public function movePieces(event:Event) {
var madeMove:Boolean = false;
for(var row:int=0;row<8;row++) {
for(var col:int=0;co0l<8;col++) {
if (grid[col][row] != null) {

// needs to move down

292

Chapter 8: Casual Games: Match Three and Collapsing Blocks

if (grid[col][row].y <
grid[col][row].row*spacing+offsetY) {
grid[col][row].y += 5;
madeMove = true;

// needs to move up
} else if (grid[col][row].y >
grid[col][row].row*spacing+offsetY) ({
grid[col][row].y -= 5;
madeMove = true;

/] needs to move right
} else if (grid[col][row].x <
grid[col][row].col*spacing+offsetX) {
grid[col][row].x += 5;
madeMove = true;

/] needs to move left
} else if (grid[col][row].x >
grid[col][row].col*spacing+offsetX) ({
grid[col][row].x -= 5;
madeMove = true;

}

At the start of movePieces, we set the Boolean madeMove to false. Then, if any anima-
tion is required, we set it to true. In other words, if movePieces does nothing, madeMove

is false.

Then, this value is compared to the class properties isbropping and isSwapping. If
isDropping is true and madeMove is false, it must mean that all the Pieces that were

dropping have just finished. It is time to look for more matches.

Also, if isSwapping is true and madeMove is false, it must mean that two Pieces just fin-

ished swapping. In this case, it is also time to look for matches:

// if all dropping is done

if (isDropping && !madeMove) {
isDropping = false;
findAndRemoveMatches();

// if all swapping is done

} else if (isSwapping && !madeMove) {
isSwapping = false;
findAndRemoveMatches();

Match Three 293

Finding Matches

There are two very challenging parts to the Match Three program. The first is finding
any matches in a board. This is an excellent example of the “break it into smaller prob-
lems” programming technique that [wrote about in Chapter 1, “Using Flash and
ActionScript 3.0.”

The problem of finding matches of three or more consecutive Pieces in the game grid
is certainly nontrivial. It cannot be solved in a simple step. So, you cannot think of it as
a single problem to solve.

Breaking the Task into Smaller Steps

Instead, we need to break it down into smaller problems, and keep breaking it down
until we have simple enough problems that can be solved easily.

So, the findAndRemoveMatches first breaks the task into two Pieces: finding matches,
and removing them. Removing Pieces is actually a pretty simple task. It just involves
removing the Piece objects from the gameSprite, setting the grid location to null, and
giving the player some points.

NOTE

The number of points awarded depends on the number of Pieces in the match. Three
Pieces means (3-1)*50 or 100 points per Piece for a total of 300 points. Four
Pieces would be (4-1)*50 or 150 points per Piece for a title of 600 points.

However, the absence of some Pieces means that the ones above it will need to be told
they are hanging in mid air and need to drop. This is a nontrivial task, too.

So, we have two nontrivial tasks: looking for matches and telling the Pieces above any
Pieces that have been removed that they need to drop. We'll delegate these two tasks
to other functions: lookForMatches and affectAbove. The rest of the simple tasks we’ll
perform right here in the findAndRemoveMatches function.

The findAndRemoveMatches Function

We loop grab the matches found and put them into the array matches. Then, we
award points for each match. Next, we loop through all the Pieces to be removed and
remove them.

TIP

When you take difficult tasks and delegate them to new functions—functions you
haven'’t created yet—it is called top-down programming. Instead of worrying about
how we’ll find matches, we simply envision a lookForMatches function that will per-
form the task. We are building the program from the top down, taking care of the big
picture first, and worrying about the functions that handle the smaller details later.

294 Chapter 8: Casual Games: Match Three and Collapsing Blocks

/] gets matches and removes them, applies points
public function findAndRemoveMatches() {
// get list of matches
var matches:Array = lookForMatches();
for(var i:int=0;i<matches.length;i++) {
var numPoints:Number = (matches[i].length-1)*50;
for(var j:int=0;j<matches[i].length;j++) {
if (gameSprite.contains(matches[i][]j])) {
var pb = new
PointBurst(this,numPoints,matches[i][j].x,matches[i][]j].V);
addScore (numPoints);
gameSprite.removeChild(matches[i][]]);
grid[matches[i][j].col][matches[i][j].row] = null;
affectAbove(matches[i][]j]);

}

The findAndRemoveMatches function has two more tasks to perform. First, it calls
addNewPieces to replace any missing Pieces in a column. Then, it calls
lookForPossibles to make sure there are still more moves remaining. It only needs to
do this if no matches were found. This would only happen if findAndRemoveMatches was
called after new Pieces finished dropping and no current matches were found:

// add any new piece to top of board
addNewPieces();

// no matches found, maybe the game is over?
if (matches.length == 0) {
if (!lookForPossibles()) {
endGame();

}

The lookForMatches Function

The lookForMatches function still has a pretty formidable task to perform. It must create
an array of all the matches found. It must look for both horizontal and vertical matches
of more than two Pieces. It does this by looping through the rows first, and then the
columns. It only needs to check the first six spaces in each row and column, because a
match starting in the seventh space can only be two in length, and the eighth space
doesn’t have anything following it at all.

The getMatchHoriz and getMatchvert functions take the delegated task of determining
how long a match is starting at a location in the grid. For instance, if spot 3,6 is Piece
type 4, and 4,6 is also type 4, but 5,6 is type 1, calling getMatchHoriz(3,6) should
return 2, because the spot 3,6 starts a run of 2 matching Piece types.

Match Three 295

If a run is found, we also want to push the loop forward a few steps. So, if there is a
four-in-a-row match at 2,1, 2,2, 2,3, and 2,4, we just check 2,1 and get a result of 4,
and then skip 2,2 2,3 and 2,4 to start looking again at 2.5.

Every time a match is found by getMatchHoriz or getMatchVert, they return an array
containing each Piece in the match. These arrays are then added to the matches array
in lookForMatches, which is in turn returned to whatever called 1ookForMatches:
[[return an array of all matches found
public function lookForMatches():Array {
var matchList:Array = new Array();

// search for horizontal matches
for (var row:int=0;row<8;row++) {
for(var col:int=0;col<6;col++) {
var match:Array = getMatchHoriz(col,row);
if (match.length > 2) {
matchList.push(match);
col += match.length-1;

/| search for vertical matches
for(col=0;col<8;col++) {
for (row=0;row<6;row++) {
match = getMatchVert(col,row);
if (match.length > 2) {
matchList.push(match);
row += match.length-1;

}

return matchList;

The getMatchHoriz and getMatchVert Functions

The getMatchHoriz function now has a specialized step to perform. Given a column
and a row, it checks the next Piece over to see whether the Piece types match. If it
does, it gets added to an array. It keeps moving horizontally until it finds one that
doesn’t match. Then, it returns the array it compiled. This array may only end up hold-
ing one Piece, the one at the original column and row, if the next one over doesn’t
match. But, for example, if it does match, and the next one does, too, it returns a run
of three Pieces:

296 Chapter 8: Casual Games: Match Three and Collapsing Blocks

/! look for horizontal matches starting at this point
public function getMatchHoriz(col,row):Array {
var match:Array = new Array(grid[col][row]);
for(var i:int=1;col+i<8;i++) {
if (grid[col][row].type == grid[col+i][row].type) {
match.push(grid[col+i][row]);
} else {
return match;

}

return match;

}

The getmatchvert function is almost identical to the getMatchHoriz function, except that
it searches along columns rather than rows:
/] look for vertical matches starting at this point
public function getMatchVert(col,row):Array {
var match:Array = new Array(grid[col][row]);
for(var i:int=1;row+i<8;i++) {
if (grid[col][row].type == grid[col][row+i].type) {
match.push(grid[col][row+i]);
} else {
return match;

}

return match;

The affectAbove Function

We'll continue to work to build findAndRemoveMatches all the functions it needs. Next on
the list is affectAbove. We pass a Piece into this, and then expect it to tell all Pieces
above it to move down on step. In effect, it is a Piece saying, “I'm going away now, so
all you guys drop down to fill in the gap.”

A loop looks at the Pieces in the column that are above the current one. So, if the cur-
rent one is 5,6, it looks at 5,5, 5,4, 5,3, 5,2, 5,1, and 5,0 in that order. The row of
these Pieces will be incremented by one. Also, the piece will tell the grid that it is in a
new location.

Remember that with movePieces, we don’t need to worry about how a Piece will animate
to get to a new location, we just change the col or row and it will take care of itself:
// tell all pieces above this one to move down
public function affectAbove(piece:Piece) {
for(var row:int=piece.row-1;row>=0;row--) {
if (grid[piece.col][row] != null) {

Match Three 297

grid[piece.col][row].row++;
grid[piece.col][row+1] = grid[piece.col][row];
grid[piece.col][row] = null;

The addNewPieces Function

The next function we need to build is addNewPieces. This looks at each column, and
then at each spot in the grid for each column, and counts the number of spots set to
null. For each one, a new Piece is added. Although its col and row value is set to
match its final destination, the y value is set to be above the top row, so it appears to
fall down from above. Also, the isbropping Boolean is turned to true to indicate ani-
mation in progress:
// if there are missing pieces in a column, add one to drop
public function addNewPieces() {
for(var col:int=0;col<8;col++) {
var missingPieces:int = 0;
for(var row:int=7;row>=0;row--) {
if (grid[col][row] == null) {
var newPiece:Piece = addPiece(col,row);
newPiece.y = offsetY-spacing-spacing*missingPieces++;
isDropping = true;

Finding Possible Moves

As tricky as finding matches is, it is easier than finding possible matches. These aren’t
three-in-a-row matches, but rather the possible three-in-a-row matches.

The simplest answer is to scan the entire board, making every swap: 0,0 with 1,0, then
1,0 with 2,0, and so on. With each swap, check for matches. As soon as a swap that
leads to a valid match is made, we can stop looking and return true.

This brute-force approach would work, but it could be awfully slow, especially on older
machines. There is a better way.

If you think about what it takes to make a match, some patterns form. Typically, you
have two Pieces of the same type in a row. The spot next to these Pieces is of a differ-
ent type, but can be swapped in three directions to bring in another Piece that may
match. Alternatively, you could have two Pieces spaced one apart from each other, and
a swap could bring a matching Piece between them.

298 Chapter 8: Casual Games: Match Three and Collapsing Blocks

Figure 8.9 shows these two patterns, broken further into six possible patterns.
Horizontally, the missing Piece in the match can come at the left or right, whereas ver-
tically, it can come at the top or bottom.

Flgure 8.9 Horizontal, Two Plus One Horizontal, Middle

The filled circles
represent the Pieces ® ® ®
OO " 000® 00O

that will stay put.
The empty circle ® ® ®
represents the space
that must be filled Vertical, Two Plus One Vertical, Middle

with the matching ® . .
piece. The circles ® O ® or o ® O ®
with the X in them

® ®»O® ®

are possible loca-
tions for this match- . ®

ing Piece.

Knowing that there are only a few patterns that we need to look for, we can write a
function that takes a list of locations and determines whether the pattern matches. With
top-down programming, we can first write lookForPossibles and worry about writing
the pattern-matching function later.

So, looking at the first pattern in Figure 8.9, we’ve got two spots that need to contain a
match, and three spots where if any one of them contains the same as the matching
type, we've got a positive result. Using the leftmost filled circle as point 0,0, we can say
that the one next to it (1,0) must match. Then, there needs to be at least one other
matching Piece at locations —1,-1, —2,0, or —1,1. Alternatively, the match can be on
the right side of the initial pair. These would be positions 2,-1, 2,1, and 3,0.

So, there is a starting Piece. Then, a single position that must match the starting
Piece. Then, six other positions where at least one must match. Figure 8.10 shows
this as a diagram.

Figure 8.10
Position 1,0 needs
to match 0,0. At
least one of the six A
X spots also needs
to match 0,0.

A1

Match Three 299

The function call would pass in an array of positions that must match, and a second
array of positions where at least one must match. It would look like this:

matchPattern(col, row, [[1,0]], [[-2,0],[-1,-1],[-1,1],[2,-1],[2,1],[3,0]]))

We need a similar function call to deal with the “Horizontal, Middle” situation shown in
Figure 8.9. Then, both the vertical patterns, too. The lookForPossibles searches for all
of them, at all positions in the grid:
/] look to see whether a possible move is on the board
public function lookForPossibles() {
for(var col:int=0;col<8;col++) {
for(var row:int=0;row<8;row++) {

// horizontal possible, two plus one
if (matchPattern(col, row,
(r1,e11, r-2,e1,(-1,-11,[-1,11,[2,-11,[2,1],[3,0]1)) {
return true;

/] horizontal possible, middle
if (matchPattern(col, row, [[2,0]], [[1,-11,[1,1]11)) {
return true;

/1 vertical possible, two plus one
if (matchPattern(col, row,
(re,111, rre,-21,[(-1,-11,11,-11,[-1,21,[1,2],[0,3]1)) {
return true;

/] vertical possible, middle
if (matchPattern(col, row, [[0,2]], [[-1,11,[1,1]11)) {
return true;

}

// no possible moves found
return false;

}

The matchPattern function, although it has a large task to perform, is not a very large
function. It needs to get the type of the Piece at the column and row position specified.
Then, it looks through the mustHave list and checks the Piece in the relative position. If
it doesn’t match, there is no point continuing, and the function returns false.

Otherwise, each of the Pieces in needone is checked. If any of them match, the function
returns true. If none match, the function ends up returning false:

300

Chapter 8: Casual Games: Match Three and Collapsing Blocks

public function matchPattern(col,row:uint, mustHave, needOne:Array) {
var thisType:int = grid[col][row].type;

/] make sure this has all must-haves
for(var i:int=0;i<mustHave.length;i++) {
if (!matchType(col+mustHave[i][0],
row+mustHave[i][1], thisType)) {
return false;

// make sure it has at least one need-ones
for(i=0;i<needOne.length;i++) {
if (matchType(col+needOne[i][0],
row+needOne[i][1], thisType)) {
return true;

}

return false;

All the comparisons in matchPattern are made through calls to matchType. The reason
for this is that we are often trying to look at Pieces that are not in the grid. For
instance, if the column and row passed into matchPattern are 5,0, and the Piece that is
offset by —1,-1 is examined, we are looking up grid[4, -1], which is undefined, because
there is no such thing as item —1 of an array.

The matchType function checks for grid location values outside of what we have set up,
and returns a false instantly if that happens. Otherwise, the grid value is examined,
and true is returned if the types match:
public function matchType(col,row,type:int) {
// make sure col and row aren't beyond the limit
if ((col < @) || (col > 7) |, (row < @) || (row > 7)) return false;
return (grid[col][row].type == type);

Score Keeping and Game Over

Way back in findAndRemoveMatches, we called addScore to award the player some
points. This simple function adds points to the player’s score, and relays the change to
the text field on the screen:
public function addScore(numPoints:int) {
gameScore += numPoints;
MovieClip(root).scoreDisplay.text = String(gameScore);

Match Three 301

When no possible matches are left, the endGame function takes the main timeline to the
gameover screen. It also uses swapChildIndex to put the gameSprite at the very back,
and so the sprites on the gameover frame will be above the game grid.

We need this because we won’t be deleting the game grid at the end of the game.
Instead, we’ll leave it there for the player to examine:
public function endGame() {
/] move to back
setChildIndex (gameSprite,0);
/] go to end game
gotoAndStop("gameover");

}

We get rid of the grid and the gameSprite when the player is ready to move on. For
that purpose, the cleanup function takes care of it:
public function cleanUp() {
grid = null;
removeChild(gameSprite);
gameSprite = null;
removeEventListener(Event.ENTER_FRAME,movePieces);

}

In the main timeline, the function tied to the Play Again button calls cleanup just before
jumping back to the previous frame to start a new game.

Modifying the Game

One important decision to make is whether you want six or seven piece variations in
the game. Most Match Three games seem to use six. I've used seven in the past, and
that has worked, too. Using seven brings the game to an end sooner.

Bonus points are another improvement that can be made. An additional graphics layer
can be added to the Pieces, similar to the selection border. It can be made visible on
random Pieces to indicate bonus points. A bonus property can be added to the Piece,
too, and it could trigger a second call to addScore when that Piece is removed.

Hints are a way to make the game more enjoyable for the player. When
lookForPossibles is called, it calls matchType a number of times. If a possible match is
found in the second loop inside matchType, a true is returned. The very position that
matchType is examining at this point is a Piece that can be used in a swap to make a
match. This can be placed in a new variable called something like hintLocation, and
then that location used to highlight a Piece when the player clicks a hint button.

302 Chapter 8: Casual Games: Match Three and Collapsing Blocks

Collapsing Blocks

Source Files
http://flashgameu.com
A3GPU208_CollapsingBlocks.zip

Another popular casual game typeis called Collapsing Blocks. Like Match Three, you
are presented with a grid of game pieces. Also like Match Three, you start by selecting
a single piece with the hope of eliminating some of the pieces from the grid.

The main difference is in how the pieces interact. In Collapsing Blocks, you look for
groups of blocks. For a block to be part of a group, it must be the same color as
another block that is directly to the left, right, above, or below.

Figure 8.11 shows the start of a game with four different types of blocks.

Figure 8.11 Aann CollapsingBlocks.swt
The game features
a 16x10 grid of
blocks using four
different colors.

Figure 8.12 shows a group of nine white blocks surrounded by gray blocks. Each white
block in the group is directly to the left, right, above, or below another white block in
the group. There is a second group of only two white blocks on the right. These two
groups are separate and not connected.

http://flashgameu.com

Collapsing Blocks 303

Figure 8.12

S T T T [[
tinct groups of
white blocks. . . .

In Collapsing Blocks, the blocks themselves are never replaced. When you select a
group of three blocks, that leaves a hole of three spaces in the middle of the grid. Like
Match Three, the pieces fall down to fill the spaces, and they aren’t replaced by new
blocks from above.

Therefore, it is possible to clear an entire column of blocks. When that happens, the
blocks must “fall” from the right to the left so as not to leave a gap. As the player
chooses groups of blocks, the entire grid slowly collapses from top to bottom and from
right to left. Most games end with a few blocks remaining at the bottom left corner.

The game might seem somewhat mindless, but there are two strategic goals for the
player. The first is to choose groups of blocks in such a way that the fewest possible
blocks are left at the end of the game. There is often the option to completely clear the
board if the player chooses wisely.

More importantly, there is a scoring strategy. Points scored depend on the number of
blocks in the group. The progression is exponential. A group of two blocks scores 2 [ts]
2 = 4. A group of three blocks scores 3 [ts] 3 = 9. A group of four scores 4 [ts] 4 =
16. So, it is better to remove a group of four blocks than two groups of two. If the
player can choose the groups wisely, he or she can score far more points by stringing
together large groups of blocks. A group of 20 blocks scores 400. If the player can
connect another nine blocks to that same group, then 29 blocks scores 841.

Setting Up the Graphics

The only graphic element in the game is the blocks. We set that up just the like pieces
in the Match Three game. There are four frames, each with a block of a different
color. No need for a selection border, as clicking on a block in a group instantly
removes that group.

The rest of the game is set up like Match Three, with a start frame, an end frame, and
a score at the upper right.

304

Chapter 8: Casual Games: Match Three and Collapsing Blocks

Setting Up the Class

After importing the libraries, we start with some constants. We have one for the dis-
tance between blocks. In this case, we have each block spaced 32 pixels apart. The
blocks themselves are 30x30, which leaves a gap between them.

We also have constants for the left and top offset for the blocks. The number of
columns and rows in the grid are also constants. So, you can adjust these numbers and
come up with a different-sized grid and reposition it on the screen.

The last constant is moveStep, which is the number of pixels per frame that the blocks
fall. We've purposely made that a number that evenly divides into the spacing constant
so the blocks fall into the next position perfectly:
package {
import flash.display.*;
import flash.events.*;
import flash.text.*;

public class CollapsingBlocks extends MovieClip {

/] constants

static const spacing:Number = 32;
static const offsetX:Number = 34;
static const offsetY:Number = 60;
static const numCols:int = 16;
static const numRows:int 10;
static const moveStep:int = 4;

There are only four game variables. As it turns out, we don’t need to keep track of
much. There needs to be the equivalent to grid from the Match Three game, but in this
case. we call it blocks. It is still a two-dimensional array containing each game piece.

The blocks appear on the screen, of course, but we put them in a sprite called
gameSprite. Then, we use gameScore to keep track of the score. Finally, we have a
Boolean named checkColumns. You learn how to use that later.

/] game grid and mode

private var blocks:Array; // grid of blocks

private var gameSprite:Sprite;

private var gameScore:int;

private var checkColumns:Boolean;

Starting the Game

Setting up the grid, or blocks, in the game is similar to setting up the game pieces in
Match Three. However, we don’t need to confirm that the result is a valid start to the
game. Any random arrangement of four different-colored blocks is a valid grid with
moves, as long as the grid is 3x3 or larger.

Collapsing Blocks 305

We start by setting up the blocks array with empty columns, and then looping through
each column and adding blocks for each row in each column by calling addBlock. That
function is going to take care of adding the blocks to the game sprite. Here, we just
need to create the game sprite and add it to the stage:

public function startCollapsingBlocks() {

/| create blocks array

blocks = new Array();

for(var cols:int=0;cols<numCols;cols++) {
blocks.push(new Array());

/| create game sprite and add blocks to sprite and array
gameSprite = new Sprite();
for(var col:int=0;col<numCols;col++) {
for(var row:int=0;row<numRows;row++) {
addBlock(col,row);

}
addChild(gameSprite);

The starting values of checkColumns are false, and the score is set to 0. Like the Match
Three game, we need a listener that enables blocks to fall down to fill spaces. So, we
add that listener here:

}

/] set starting values
checkColumns = false;
gameScore = 0;

/! begin to watch for moving blocks
addEventListener(Event.ENTER_FRAME,moveBlocks) ;

The addBlock function creates a new block from the library and sets three dynamic
properties: col, row, and type. The first two let each block keep track of its own posi-
tion. The last is the number of the color of each block. It is handy to refer to this type
property later in the game code:

public function addBlock(col,row:int) {

/| create object and set location and type
var newBlock:Block = new Block();
newBlock.col = col;

newBlock.row = row;

newBlock.type = Math.ceil(Math.random()*4);

306 Chapter 8: Casual Games: Match Three and Collapsing Blocks

The position of the block on the screen is col and row value, multiplied by the spacing
constant. In addition, the offsets are used to center the entire grid of blocks on the
screen. Then, we jump to the frame that matches the block type. We also add the block
to the game sprite:

//] position on screen

newBlock.x = col*spacing+offsetX;

newBlock.y = row*spacing+offsetY;

newBlock.gotoAndStop (newBlock.type);

gameSprite.addChild(newBlock);

This next part adds the block to the blocks array at the proper column and row position:

// add to array
blocks[col][row] = newBlock;

Each block needs its own mouse listener so it can react to being clicked:

/| set mouse event listener
newBlock.addEventListener (MouseEvent.CLICK,clickBlock);

Recursion

If you have been looking ahead, you might have noticed that there isn’t as much code
to Collapsing Blocks as there was for Match Three. Because of that, you might be
thinking that this is an easier game to code.

The reason there is less code is that we use a programming technique called recursion.
This technique doesn’t require many lines of code, but it does require a deeper under-
standing of programming—one that nonprogrammers usually have great difficulty with.

NOTE

Recursion is used throughout computer science for many purposes. Two of the most
common are sorting functions and search algorithms. Another is path finding, which is
used in games when you tell your game pieces to go to a location and it finds its way
around obstacles to get to that location.

A recursive function is one that calls itself. Why would you do that? Well, as it turns out,
the Collapsing Blocks game is a good example of basic recursion. Let’s learn by walking
through an example. Take a look at Figure 8.13, where each of the white blocks is part
of a group that the player has selected to remove.

Collapsing Blocks 307

Figure 8.13

The player clicks on
block M, and all the
blocks in the white

group are removed.

The player clicks on M. M is the first block of the group to be removed, but how do we
find all the other blocks in the group, while not including any of the gray blocks?

The first few steps seem simple enough. The function should look above, below, to the
left, and to the right. Any block that is the same color as the first one should be added
to the group. L, N, and R are added, but how do we continue to find block I?

Here’s another way the code can operate. The function can check one block to see if it
matches the color. If it does, then it continues. If not, then it returns a “Sorry, no
matches here.”

If it continues, however, it starts a list. It adds itself to the list. Then, it asks its four
neighbors to do the same thing.

So, the function is called for the first time, and it is fed the parameters block M and the
color white. The function figures out that M is white, so it starts a list with M on it.

Then, it asks the neighboring four blocks if they are also white, and if so, they return a
list of all the white blocks connected to them.

The function goes like this:

Start an empty list of white blocks.
Am I a white block? If so, add me to the list. If not, then return an empty list.

Now that [know I am a white block, look in all four directions and ask those
blocks for lists of white blocks connected to them. Add those lists to my list.

Return the list of white blocks.

In the example, the function is first called with M. We call the function testBlock. The
function has an empty list of white blocks, but M itself is white, so it adds itself to the
list and continues.

The function then calls testBlock with H as the target block. H isn’t white, so an
empty list is returned. The original function adds this empty list to its list, which still just
contains M.

308

Chapter 8: Casual Games: Match Three and Collapsing Blocks

Then, it calls testBlock again with the target L. This time, the function returns a list
with L. It asks for lists from G, K, and Q by calling testBlock with the targets of G, K,
and Q. None of these are white, so these testBlock calls return an empty list.

The same thing happens for R. The function returns only R, after calls to testBlock tar-
geting Q, W, and S return empty lists.

When the original function calls testBlock with the target of N, something different
happens. N is added to the list, and then testBlock is called again targeting I, O, and S.
In this case, the first call returns a list with I. I is added to the list with N, and the origi-
nal function call gets back a list with N and 1.

The original function starts its list with M, and then adds nothing from above, L from
the left, R from below, and then N and I from the right. The result is: M, L, R, N, L.

NOTE

Doesn’t this technique just end up checking the same blocks over and over again?
When M is checked, it looks at H, L, R, and N. Then, when L is checked, it looks at
G, K, Q, and M. M gets looked at again! That would cause an infinite loop with M and
L being checked and rechecked forever. So, we need to mark M as being added to the
list already. We do that by setting its type to 0. Then, we skip adding any blocks with
type O to the list. This prevents that type of looping.

Confused? Recursion is a difficult concept for many people. Perhaps after you see the
game code and observe it in action, you might get it. Or, you might have to take it on
faith that the function testBlock starts by observing a single block, and then reaches out
and examines all neighbors until it finds all the matches in a connected group.

Recursive Block Removal

The first part of the block removal code is the function that handles a mouse click on a
block. This is simple enough. It calls findAndRemoveMatches with the block clicked and
stores the number of points scored. The only use for this number is to determine if a
PointBurst should occur and how many points to show. The actual scoring of points
takes place inside findAndRemoveMatches:

public function clickBlock(event:MouseEvent) {

var block:Block = Block(event.currentTarget);
var pointsScored:int = findAndRemoveMatches(block);

if (pointsScored > 0) {
var pb = new PointBurst(this,pointsScored,mouseX,mouseyY);

}

Collapsing Blocks 309

The function that handles most of everything to do with removing groups of blocks,
except for identifying which blocks to remove, is findAndRemoveMatches.

The findAndRemoveMatches function starts by getting the color, or type, of the block
clicked. Then, it calls the magic testBlock function, which we look at later. From that,
it has a list of all blocks in the group:

public function findAndRemoveMatches(block:Block):int {

/! get the block type
var type:int = block.type;

/| start recursive search for all blocks that match
var matchList:Array = testBlock(block.col, block.row, type);

Now we only want to remove a group if there is a group. If a block is by itself, we don’t
do anything. If there are two or more in the group, then we remove those blocks from
the game sprite and call affectAbove, which tells the blocks above this one to drop
down, just like in Match Three:

/| see if enough match
if (matchList.length > 1) {

// remove these, and allow ones above them to drop

for(var i=0;i<matchList.length;i++) {
gameSprite.removeChild(matchList[i]);
affectAbove(matchList[i]);

}

Next, the function sets the checkColumns Boolean flag. This sets a reminder for our
code that after all blocks have dropped down that we need to also check to see if there
are any empty columns:

// remember to check for empty columns when drops are done
checkColumns = true;

Here is where we add the points to the score and also break out of the function com-
pletely, returning the number of points scored:
// add score based on the number of blocks and return that score
var pointsScored:int = matchList.length * matchList.length;
addScore(pointsScored);
return pointsScored;

What happens if not enough blocks are found in the group? The first order of business
is to return the type property of the clicked block to its original value.

310 Chapter 8: Casual Games: Match Three and Collapsing Blocks

Then, at the end of the function, a 0 is returned because no points have been scored:
} else {
// not enough match, so restore original block type
block.type = type;

// no points scored
return 0;

Now, here is the recursive function. Notice how small it is: only 10 lines of actual code.
Recursive functions, while performing huge tasks, usually have little code.

The testBlock function starts by accepting the column, row, and type of a block. It
then sets up an empty array. It calls getBlockType to see if the type is 0, which signifies
either that the block has already been identified as part of the group or the block
doesn’t exist because it had previously been removed or is not a valid location past the
edges of the grid.

Then, it checks to see if the type matches the color we are looking for. If so, it adds
itself to the list, and then recursively calls testBlock for each of the four directions:

public function testBlock(col,row,type) {

/] start with empty array
var testList:Array = new Array();

// does the block exist, or has this block already been found?
if (getBlockType(col,row) == Q) return testlList;

/] is the block the right type?
if (blocks[col][row].type == type) {

/] add block to array and zero it out
testList.push(blocks[col][row]);
blocks[col][row].type = 0;

/] test in all directions from here

testList = testList.concat(testBlock(col+1, row, type))
testlList = testList.concat(testBlock(col-1, row, type));
testList = testList.concat(testBlock(col, row+1l, type));
testList = testList.concat(testBlock(col, row-1, type))

)

b

/| return results
return testList;

Collapsing Blocks 311

At the end of the recursive function, it needs to return the array of matching blocks found.

/ s NOTE
w

You might notice that blocks are often looked at more than once. For instance, in
Figure 8.13, block Q is looked at as the one under L, and then again as the one to
the left of R. In this game, such duplicate efforts don’t slow the game enough to
notice. In more complex recursive searches, it might be necessary to mark each item
“looked at” in addition to each item added to the group. Then, you can avoid check-
ing anything twice.

And, there is the recursive function. A single call to testBlock with the column, row,
and type returns a complete list of all blocks connected to that one with the same type.

One loose end is the getBlockType function. The idea here is to return a O if the block
is missing, or the location is off the edge of the grid. Otherwise, return the actual type
value:

public function getBlockType(col,row) {

// first check to see if the location is within limits
if ((col < @) ,, (col >= numCols)) return 0;
if ((row < @) ,, (row >= numRows)) return 0;
// does block exist?
if (blocks[col][row] == null) return 0;

/] block exists, so return type
return blocks[col][row].type;

Falling Blocks

The way blocks fall is the exact same way it works in Match Three. However, it can be
simplified a little as blocks can only move down and to the left. In addition, we use the
moveStep constant to polish up these functions a bit, rather than hard-coding values:

public function moveBlocks(event:Event) {
var madeMove:Boolean = false;
for(var row:int=0;row<numRows;row++) {
for(var col:int=0;col<numCols;col++) {
if (blocks[col][row] != null) {

/] needs to move down
if (blocks[col][row].y <
blocks[col][row].row*spacing+offsetY) {
blocks[col][row].y += moveStep;
madeMove = true;

312 Chapter 8: Casual Games: Match Three and Collapsing Blocks

// needs to move left
} else if (blocks[col][row].x >
blocks[col][row].col*spacing+offsetX) {
blocks[col][row].x -= moveStep;
madeMove = true;

}

One difference here is that we need to check for empty columns when the movement
has all stopped:
/] everything settled, so time to check for empty columns
if ((!madeMove) && (checkColumns)) {
checkColumns = false;
checkForEmptyColumns();

}

The affectAbove function is what sets the blocks in motion, by looking at all the
blocks above a newly removed block and setting them to fall down to the next space
on the grid:

/] tell all blocks above this one to move down

public function affectAbove(block:Block) {

// remove this block
blocks[block.col][block.row] = null;

/] check blocks above and move them down
for(var row:int=block.row-1;row>=0;row--) {
if (blocks[block.col][row] != null) {
blocks[block.col][row].row++;
blocks[block.col][row+1] = blocks[block.col][row];
blocks[block.col][row] = null;

Checking for Empty Columns

Here’s the function that looks at columns after the blocks have stopped falling.

It is a fairly complex procedure. It starts on the left and looks at each column. If it
notices that the bottom block is gone, it sets the flag foundEmpty to true.

From that point on, instead of looking at the columns for more empty ones, it simply
sets all the blocks in the remaining columns to “fall” over to the left:

Collapsing Blocks

public function checkForEmptyColumns() {

// assume no column found
var foundEmpty:Boolean = false;
var blocksToMove:int = 0;

// loop through each column, left to right
for(var col:int=0;col<numCols;col++) {

// if no empty found yet
if (!foundEmpty) {

/| see if bottom block is gone
if (blocks[col][numRows-1] == null) {

// this column is empty!
foundEmpty = true;

// remember to check for empty columns again
checkColumns = true;

// empty column found before, so this one must move over
} else {

/] loop through blocks and set each to move left
for(var row:int=0;row<numRows;row++) {
if (blocks[col][row] != null) {
blocks[col][row].col--;
blocks[col-1][row] = blocks[col][row];
blocks[col][row] = null;
blocksToMove++;

313

At the end of the function, we know whether any columns need to be moved. If not,

then this is a good place to check to see whether the game is over:
// didn't move any blocks, check to see if the game is over

if (blocksToMove == 0) {
checkColumns = false;
checkForGameOver();

}

314

Chapter 8: Casual Games: Match Three and Collapsing Blocks

The movement of the blocks “falling” to the left is handled by the moveBlocks function,
which is called every frame. That function doesn’t really care whether the blocks are
falling down or to the left—it handles both.

Game Over

One of my favorite programming tasks in puzzle games is trying to write a function to
determine if a game is over. In the case of Collapsing Blocks, your first instinct might
be to test each block to see if it would result in a group of blocks if clicked—and that
would certainly work.

However, there are often trickier and more efficient ways to handle it, as is the case here.

We can simply loop through all the columns and rows and examine each block that is
still present. If it matches a single block to the right or below, then there is a group of
at least two blocks in the grid. Therefore, the game still has valid moves remaining.

If no such situation is found, then the game is over:
public function checkForGameOver() {

/! loop through all blocks
for(var col=0;col<numCols;col++) {
for(var row=0;row<numRows;row++) {

// if this block is there, and matches to the right
/] or below, then there are moves possible

var block:int = getBlockType(col,row);

if (block == @) continue;

if (block == getBlockType(col+1,row)) return;

if (block == getBlockType(col,row+1)) return;

}

// no possible moves found, game must be over
endGame () ;

}

When the game is over, as with Match Three, we send the gameSprite to the back and
jump to another frame:

public function endGame() {
/| move to back
setChildIndex (gameSprite,0);
/] go to end game
gotoAndStop("gameover");

Collapsing Blocks 315

There is also a cleanup function to dispose of all game elements when the user wants to
play again:
public function cleanUp() {
blocks = null;
removeChild(gameSprite);
gameSprite = null;
removeEventListener (Event.ENTER_FRAME,moveBlocks) ;
scoreDisplay.text = "0";

}

And, just to be complete, here is the addScore function:
public function addScore(numPoints:int) {
gameScore += numPoints;
scoreDisplay.text = String(gameScore);

Modifying the Game

Like most puzzle games, Collapsing Blocks is easy to customize for a theme. You can
use any sort of icon for the four different block types. You can add a background to
enhance the theme. In one version of this game, | made the blocks shopping carts to
give it a supermarket checkout line theme.

You can also add bonuses. A simple bonus would be to mark some of the blocks with
multipliers. Or, you could create the ultimate bonus and give players extra points if they
eliminate all the blocks in their final move.

You can also easily vary the number of blocks in the grid and even try it with five block
types, although this makes the game much harder to play.

