
ptg

99
Word Games: Hangman and
Word Search

Strings and Text Fields

Hangman

Word Search

ptg

Using letters and words for games has been popular since the mid-20th century with
board games, such as Scrabble, and paper games, such as crosswords and word searches.

These games work well as computer games and as web-based games. This chapter
looks at two traditional games: hangman and word search. First, however, we need to
take a closer look at how ActionScript handles strings and text fields.

Strings and Text Fields
Source Files

http://flashgameu.com

A3GPU209_TextExamples.zip

Before trying to make word games, it is worthwhile to see how ActionScript 3.0 han-
dles strings and text fields. After all, we’ll be using them quite a bit in the games.

ActionScript 3.0 String Handling
A String variable in ActionScript is a sequence of characters. We’ve been using strings
throughout the book so far, without thinking much about how to perform advanced
operations on them.

Creating a string is as simple as assigning some characters, surrounded by quotes, to a
variable of type String:
var myString:String = "Why is a raven like a writing desk?";

String Deconstruction
We can deconstruct the string with a variety of functions. To get a single character at a
location, we can use charAt:
myString.charAt(9)

This returns "r."

NOTE
ActionScript starts counting character positions in strings at character 0. So, the 0
character in the example is "W", and the ninth character is "r."

We can also use substr to get one or more characters from the string. The first
parameter is the starting position, and the second parameter is the number of charac-
ters to return:
myString.substr(9,5)

Chapter 9: Word Games: Hangman and Word Search318

http://flashgameu.com

ptg

Strings and Text Fields 319

This returns "raven."

The substring function is an alternative that takes the start and end position as
parameters. Then, it returns the character from the start position to one less than the
end position:
myString.substring(9,14)

This also returns "raven."

The slice function acts like the substring function, except for a how the values of the
second parameter are interpreted. In substring, if the second parameter is less than the
first, the parameters are reversed. So, myString.substring(9,14) is the same as
myString.substring(14,9).

The slice function enables you to use negative values for the second parameter. It
then counts backward from the end of the string. So, myString.slice(9,-21) will
return "raven."

Both substring and slice allow you to leave out the second parameter to get the
remainder of the string:
myString.slice(9)

This returns "raven like a writing desk?"

Comparing and Searching Strings
To compare two strings, you just need to use the == operator:
var testString = "raven";
trace(testString == "raven");

This returns true. However, it is case sensitive, so the following returns false:
trace(testString == "Raven");

If you want to compare two strings, regardless of case, it is just a matter of converting
one or both strings to only lower- or only uppercase. You can do this with toUpperCase
and toLowerCase:
testString.toLowerCase() == "Raven".toLowerCase()

To find a string inside another string, you can use indexOf:
myString.indexOf("raven")

This returns 9. We can also use lastIndexOf to find the last occurrence of a string
inside another string:
myString.indexOf("a")
myString.lastIndexOf("a")

The first returns a 7, and the second returns a 20. These match the first and last posi-
tions of the letter a in the string “Why is a raven like a writing desk?”

ptg

NOTE
You can also give indexOf and lastIndexOf a second parameter. This number tells it
where in the string to start looking, instead of starting at the very beginning or very end.

Most of the time when you are using indexOf, you are not looking for the position of
the string, but whether the string is there at all. If it is, indexOf returns a number, 0 or
greater. If not, it returns a -1. So, you can determine whether one string is found inside
another like this:
(myString.indexOf("raven") != -1)

Another way to find a string inside another string is the search function:
myString.search("raven")

This returns 9.

The search function can take a string as a parameter, as previously mentioned, but it
can also take something called a regular expression:
myString.search(/raven/);

NOTE
A regular expression is a pattern used to find/replace strings inside of other strings.
Regular expressions are used in many programming languages and tools.

The subject of regular expressions is deep. So deep, in fact, that several 1,000+ pages
books exist that only cover regular expressions. There are also plenty of websites that
go into detail. Check out http://flashgameu.com for a page of links on the subject.

This example is the simplest type of regular expression and is identical to the previous
use of search. Notice that the / character is used rather than quotes to surround
the characters.

You can also give the regular expression some options after the last slash. The most
useful here would be an i for case insensitivity:
myString.search(/Raven/i);

This example returns 9, even though there is a capital R.

You can also use wildcards in regular expressions. For instance, the period character
represents any character:
myString.search(/r...n/)

This returns 9 because the word raven matches the pattern of r followed by any three
characters, followed by n:
myString.search(/r.*n/)

Chapter 9: Word Games: Hangman and Word Search320

http://flashgameu.com

ptg

This also returns a 9 because the pattern is r followed by any number of characters, fol-
lowed by an n.

Building and Modifying Strings
You can append to a string by using a + operator. ActionScript will figure out that it is a
String, not a number, and append rather than add. You can also use += to perform a
simple append:
myString = "Why is a raven like";
myString += " a writing desk?";

To place something before an existing string, you use code like this:
myString = "a writing desk?";
myString = "Why is a raven like "+myString;

Whereas the search function searches and returns an index value, the replace function
takes a regular expression and uses it to replace a portion of the string:
myString.replace("raven","door mouse")

The result would be “Why is a door mouse like a writing desk?”

You can also use a regular expression in the first parameter. This allows things to get
very complex, such as moving text around inside a string rather than bringing in
replacement text:
myString.replace(/(raven)(.*)(writing desk)/g,"$3$2$1")

This code example looks for raven and writing desk within the string, separated by any
number of characters. It then reorders the string, with the writing desk coming first, the
raven coming last, and the same characters in between.

Converting Between Strings and Arrays
Both strings and arrays are useful for storing lists of information. It is useful, therefore,
to be able to convert between them.

For instance, if you have a string "apple,orange,banana", you might want to create an
array from it. To do this, you can use the split command:
var myList:String = "apple,orange,banana";
var myArray:Array = myList.split(",");

You can reverse the process by using the join command:
var myList:String = myArray.join(",");

In both cases, the character passed into the function represents the character used to
divide the items in the string. If you use the join command, the resulting string is
patched together with commas between the items.

Strings and Text Fields 321

ptg

Summary of String Functions
Table 9.1 contains all the String functions we have discussed, plus a few more.

Table 9.1 String Functions

Function Syntax Description

charAt myString.charAt(pos) Returns the character at the location
charCodeAt String.charCodeAt(pos) Returns the character code of the

character at the location
concat myString.concat(otherString) Returns a new string with the second

string appended to the first
fromCharCode String.fromCharCode(num) Returns the character from the character

code
indexOf myString.indexOf Returns the location of the inner string

(innerString,startPos) in the main string
join myArray.join(char) Combines the elements in an array to

make a string
lastIndexOf myString.lastIndexOf Returns the last location of the inner

(innerString,startPos) string in the main string
match myString.match(regexp) Returns the substring matching the

pattern
replace myString.replace Replaces the pattern

(regexp,replacement)

search myString.search(regexp) Finds the location of the substring
matching the pattern

slice myString.slice(start,end) Returns the substring
split myString.split(char) Splits the string into an array
string String(notAString) Converts a number or other value to a

string
substr myString.substr(start,len) Returns the substring
substring myString.substr(start,end) Returns the substring
toLowerCase myString.toLowerCase() Returns the string with lowercase letters
toUpperCase myString.toUpperCase() Returns the string with uppercase letters

Applying Text Formatting to Text Fields
To place text on the screen, you need to create a new TextField. We’ve used these
fields in previous chapters to create text messages and score displays.

If you want to use anything but the default font and style, you also need to create a
TextFormat object and assign it to the text field. And for the advanced use of text in
games, we also need to look at including fonts in our movies.

Chapter 9: Word Games: Hangman and Word Search322

ptg

The TextFormat Object
Creating a TextFormat object is usually done just before creating a TextField. Or, it
could be done at the start of a class if you know you’ll be using that format for several
of the text fields you’ll be creating.

All TextFormat really is, is a holder for a set of properties. These properties control the
way text looks.

NOTE
In ActionScript, you can also create style sheets, similar to CSS used in HTML docu-
ments. But these are only useful for HTML-formatted text fields. We’ll only be using
plain text fields in our games.

You have two choices when creating a TextFormat. The first is to simply create a blank
TextFormat object, and then set each of the properties in it. The other choice is to
define many of the most common properties in the TextFormat declaration.

Here is an example of the quick way of creating a TextFormat:
var letterFormat:TextFormat = new

TextFormat("Courier",36,0x000000,true,false,false,null,null,"center");

It is, of course, important to remember the exact order of parameters for TextFormat. It
goes like this: font, size, color, bold, italic, underline, url, target, and align. You
can include as few or as many of these as you want, as long as they are in order. Use
null to skip any properties you don’t want to set.

NOTE
In fact, the list of parameters is more extensive, but I have left them out of the preced-
ing example: leftMargin, rightMargin, indent, and leading.

Here is the longer way of doing things:
var letterFormat:TextFormat = new TextFormat();
letterFormat.font = "Courier";
letterFormat.size = 36;
letterFormat.color = 0x000000;
letterFormat.bold = true;
letterFormat.align = "center";

Notice that I left out the italic and underline properties, because false is the default
value for both.

Table 9.2 summarizes all the TextFormat properties.

Strings and Text Fields 323

ptg

Table 9.2 TextFormat Properties

Property Values Description

align TextFormatAlign.LEFT Text alignment
TextFormatAlign.RIGHT

TextFormatAlign.CENTER

TextFormatALign.JUSTIFY

blockIndent Number Indentation of all lines of a paragraph
bold true/false Makes the text bold
bullet true/false Displays text as a bulleted list
color Color Color of the text (for example, x000000)
font Font name Which font to use
indent Number Indent of the first line of the paragraph

only
italic true/false Makes the text italic
kerning true/false Turns on special character spacing in

some fonts
leading Number Vertical spacing between lines
leftMargin Number Extra space to the left
letterSpacing Number Extra space between characters
rightMargin Number Extra space to the right
size Number Font size
tabStops Array of numbers Sets tab locations
target String The browser target of a link

(for example, "_blank")
underline true/false Makes the text underlined
url String The URL of the link

Creating TextField Objects
After you have a format, you need a text field to apply it to. Creating a TextField is
like creating a Sprite. In fact, they are both types of display objects. They can both be
added to other Sprites and movie clips with addChild:
var myTextField:TextField = new TextField();
addChild(myTextField);

To assign a format to a field, the best way is to use the defaultTextFormat property:
myTextField.defaultTextFormat = letterFormat;

The alternative is to use the function setTextFormat. The problem with this is that
when you set the text property of the field, the text formatting reverts to the default for
that field:

Chapter 9: Word Games: Hangman and Word Search324

ptg

myTextField.setTextFormat(letterFormat);

The advantage of setTextFormat is that you can add second and third parameters to
specify the start and end characters for the formatting. You can format a piece of the
text rather than the whole thing.

In games, we commonly use small text fields for things such as score, level, time, lives,
and so on. These fields don’t need multiple text formats, and they are updated often.
So, setting the defaultTextFormat is the best way to go in most cases.

Beside defaultTextFormat, the next most important property for us is selectable. Most
of the text fields we’ll be using for games are for display purposes only, or are not
meant to be clickable. We want to turn off selectable so that the cursor doesn’t change
when over the field and the user can’t select the text.

NOTE
The border property of a text field is a useful way to check the size and location of a
text field you create with ActionScript. For instance, if you only place one word or let-
ter in a field, you won’t be able to see how big the field really is without setting the
border to true, at least temporarily while testing.

Table 9.3 points out some useful TextField properties.

Table 9.3 TextField Properties

Property Values Description

autoSize TextFieldAutoSize.LEFT Resizes the text field to fit the text you
TextFieldAutoSize.RIGHT place in it
TextFieldAutoSize.CENTER

TextFieldAutoSize.NONE

background true/false Whether there is a background fill
backgroundColor Color Color of the background fill

(for example, 0x000000)
border true/false Whether there is a border
borderColor Color Color of the border (for example,

0x000000)
defaultTextFormat TextFormat object Defines the default text format used

when new text is applied
embedFonts true/false Must be set to true to use embedded

fonts
multiline true/false Must be set to true to contain multiple

lines of text
selectable true/false If true, the user can select the text in

the field

Strings and Text Fields 325

ptg

Table 9.3 Continued

Property Values Description

text String Sets the entire text contents of the field
textColor Color Sets the color of the text (for example,

0x000000)
type TextFieldType.DYNAMIC Defines whether the user can edit the

TextFieldType.INPUT text
wordWrap true/false Whether the text wraps

Fonts
If you are making a quick game as an example, or to show your friends, or just to prove
a basic concept, you can stick with basic fonts. Most of the games in this book do that
just to keep them simple.

If you are developing something for a client, however, or for your website, you should
really import the fonts you are using into the library. Doing so makes your game inde-
pendent of the fonts the users have on their machine. It will also allow you to use more
advanced effects with fonts, such as rotation and alpha.

To import a font, go to the library and choose New Font from the Library drop-down
menu. (We’ve done this before, in Chapter 7, “Direction and Movement: Air Raid II,
Space Rocks, and Balloon Pop.”)

After importing the font and naming it, make sure you also give it a linkage name in
the library so it is rolled into the movie when you publish.

NOTE
Forgetting to set the Linkage name for a font is a common mistake.. When testing
your movie, look for errors in the Output panel and for missing text in your running
movie where your ActionScript should be creating it.

Even after you embed some fonts, your text fields will not use them until you set the
embedFonts property to true.

Now by using the fonts that are in your library, you can manipulate and animate text in
various ways.

Animated Text Example
The files TextFly.fla and TextFly.as show a use of strings, text format, and text fields
to create an animation. Nothing is in the movie file except the font. The stage is empty.

Chapter 9: Word Games: Hangman and Word Search326

ptg

The TextFly.as class takes a string and breaks it into characters, producing a single
TextField and Sprite for each character. It then animates these Sprites.

The class begins by defining a bunch of constants that will determine how the anima-
tion will perform:
package {

import flash.display.*;
import flash.text.*;
import flash.geom.Point;
import flash.events.*;
import flash.utils.Timer;

public class TextFly extends MovieClip {
// constants to define animation
static const spacing:Number = 50;
static const phrase:String = "FlashGameU";
static const numSteps:int = 50;
static const stepTime:int = 20;
static const totalRotation:Number = 360;
static const startScale:Number = 0.0;
static const endScale:Number = 2.0;
static const startLoc:Point = new Point(250,0);
static const endLoc:Point = new Point(50,100);
private var letterFormat:TextFormat =

new TextFormat("Courier",36,0x000000,true,false,
false,null,null,TextFormatAlign.CENTER);

NOTE
Notice the use of the Courier font. This is a standard font on many computers, but not
all. If you do not have Courier on your computer, use a monospaced font of your
choice.

It then goes on to define some variables to hold the Sprites, and the state of the
animation:

// variables to keep track of animation
private var letters:Array = new Array();
private var flySprite:Sprite;
private var animTimer:Timer;

The construction function creates all the TextField and Sprite objects. It also starts off
the animation by creating a Timer:
public function TextFly() {

// one sprite to hold everything
flySprite = new Sprite();

Strings and Text Fields 327

ptg

addChild(flySprite);

// create all the of the letters as text fields inside sprites
for(var i:int=0;i<phrase.length;i++) {

var letter:TextField = new TextField();
letter.defaultTextFormat = letterFormat;
letter.embedFonts = true;
letter.autoSize = TextFieldAutoSize.CENTER;
letter.text = phrase.substr(i,1);
letter.x = -letter.width/2;
letter.y = -letter.height/2;
var newSprite:Sprite = new Sprite();
newSprite.addChild(letter);
newSprite.x = startLoc.x;
newSprite.y = startLoc.y;
flySprite.addChild(newSprite);
letters.push(newSprite);

}

// start animating
animTimer = new Timer(stepTime,numSteps);
animTimer.addEventListener(TimerEvent.TIMER,animate);
animTimer.start();

}

Then, with each step of the animation, the rotation and scale of the Sprites will be set:
public function animate(event:TimerEvent) {

// how far along is the animation
var percentDone:Number = event.target.currentCount/event.target.repeatCount;

// change position, scale and rotation
for(var i:int=0;i<letters.length;i++) {

letters[i].x = startLoc.x*(1.0-percentDone) +
(endLoc.x+spacing*i)*percentDone;

letters[i].y = startLoc.y*(1.0-percentDone) + endLoc.y*percentDone;
var scale:Number = startScale*(1-percentDone)+endScale*percentDone;
letters[i].scaleX = scale;
letters[i].scaleY = scale;
letters[i].rotation = totalRotation*(percentDone-1);

}
}

Figure 9.1 shows this animation in mid-action.

Chapter 9: Word Games: Hangman and Word Search328

ptg

The ability to control text fields and formats at this level is important if you plan on
making any games that use letters or words as playing pieces. Next, we take a look at
hangman, perhaps the simplest letter game you could create.

Hangman
Source Files

http://flashgameu.com

A3GPU209_Hangman.zip

Hangman is not only one of the simplest word games, it is also very simple to program.

In keeping with the spirit of simplicity, the following example will be a no-frills version
of hangman.

Setting Up the Hangman
Traditionally, the game of hangman is played with two people. The first person makes
up a word or phrase, and the second makes letter guesses. The first person draws out
the word or phrase, using a blank space (underline) in place of each letter.

When the guesser guesses a letter used in the phrase, the first person fills in all the
blank spaces where the letter is supposed to be. If the guesser picks a letter that is not
used at all, the first person draws a bit more of a hanging man in a picture. Typically,
it takes seven incorrect answers to complete the hanging man, which means the
guesser loses.

Hangman 329

Figure 9.1
The TextFly pro-
gram animates
characters in text to
have them fly in.

http://flashgameu.com

ptg

NOTE
Hangman originated in the 19th century, around the time that gallows were used to
punish criminals. This unusual image is still used in the game today, although any
seven-part sequence can be substituted.

In our game, we’ll use a seven-part sequence that differs a little from a hangman. Figure
9.2 shows our mascot character hanging on to a branch. If you make seven incorrect
guesses, he’ll fall.

Chapter 9: Word Games: Hangman and Word Search330

Figure 9.2
This seven-frame
sequence can be
substituted with just
about any other
similar idea.

So, the Hangman.fla movie has this one movie clip in it, and it is placed on the stage
on the right side. Other than that, there isn’t any other aspect to the movie except set-
ting its class to Hangman.

The Hangman Class
This entire game is only about 50 lines of code. Only four class variables are needed.

It is good to see that a fairly interesting game can be created so quickly and easily in
ActionScript 3.0.

Two strings are needed: one to hold the phrase, and another to hold the display text,
which will start with an underscore where the letters should be. Then we’ll have one
variable hold a reference to the text field, and another to keep track of the number of
wrong guesses:

ptg

package {
import flash.display.*;
import flash.text.*;
import flash.events.*;

public class Hangman extends Sprite {
private var textDisplay:TextField;
private var phrase:String =

"Imagination is more important than knowledge.";
// - Albert Einstein

private var shown:String;
private var numWrong:int;

When the class starts, it creates a copy of the phrase by running it through the replace
function with a regular expression. The expression /[A-Za-z]/g matches any letter char-
acter (A to Z and a to z, globally). It replaces these matches with an underscore:
public function Hangman() {

// create a copy of text with _ for each letter
shown = phrase.replace(/[A-Za-z]/g,"_");
numWrong = 0;

The text field we’ll set up will use a simple text format for Courier font, 30 point. It will
set the width and height so that the text will not interfere with the hangman graphic to
the right.

NOTE
The reason I chose Courier is that it is a monospaced font. This means that each letter
has the same width. Other fonts have different widths for different letters (for example,
l and w). By using a monospaced font, the text characters will not change positions as
we substitute letters for the underscores.

// set up the visible text field
textDisplay = new TextField();
textDisplay.defaultTextFormat = new TextFormat("Courier",30);
textDisplay.width = 400;
textDisplay.height = 200;
textDisplay.wordWrap = true;
textDisplay.selectable = false;
textDisplay.text = shown;
addChild(textDisplay);

The pressKey function will be assigned to the KEY_UP event for the stage:
// listen for key presses
stage.addEventListener(KeyboardEvent.KEY_UP,pressKey);

}

Hangman 331

ptg

When the player presses a key, we’ll use the event.charCode returned to get the
letter pressed:
public function pressKey(event:KeyboardEvent) {

// get letter pressed
var charPressed:String = (String.fromCharCode(event.charCode));

After the letter is known, the phrase is searched for any matches. We’re careful to use
toLowerCase so that the key pressed will match both upper- and lowercase versions in
the phrase.

When a match is found, the shown variable is updated by replacing the underscore in
that position with the actual letter from phrase. This way, the uppercase letter is used if
that is what is in phrase, and the lowercase letter if that is what is in phrase:

// loop through and find matching letters
var foundLetter:Boolean = false;
for(var i:int=0;i<phrase.length;i++) {

if (phrase.charAt(i).toLowerCase() == charPressed) {
// match found, change shown phrase
shown = shown.substr(0,i)+phrase.substr(i,1)+shown.substr(i+1);
foundLetter = true;

}
}

The foundLetter Boolean is set to false when this search starts, and it is reset to true
if any match is found. So, if it remains false, we know the letter wasn’t in the phrase,
and the hangman image will advance.

But first, we’ll update the onscreen text by setting the text field to shown:
// update on-screen text
textDisplay.text = shown;

// update hangman
if (!foundLetter) {

numWrong++;
character.gotoAndStop(numWrong+1);

}
}

NOTE
When testing in Flash, be sure to choose the menu option Control, Disable Keyboard
Shortcuts. Otherwise, your key presses will not go through to the game window.

Chapter 9: Word Games: Hangman and Word Search332

ptg

This short and simple game can be expanded to include the normal game elements we
are used to: like a start and gameover screen. This quick game shows that you don’t
need to invest more than a few hours to create a fun game experience.

Now let’s look at a more robust word game, the popular word search.

Word Search
Source Files

http://flashgameu.com

A3GPU209_WordSearch.zip

You would think that word searches have been around for a long time. In fact, they
have only been here since the 1960s. They are popular on puzzle pages of newspa-
pers, and sold in book collections.

Computer-based word search games can be generated randomly from a list of words
or dictionaries. This makes them easier to create; you only need to come up with a list
of words.

However, there are many challenging aspects to creating a computer word search
game, such as displaying the letters; allowing for horizontal, vertical, and diagonal high-
lighting; and maintaining a word list.

Development Strategy
Our game will take a list of words and create a 15x15 grid of letters with those words
hidden among other random letters. Figure 9.3 shows a complete grid.

Word Search 333

Figure 9.3
The grid at the
starting point, with
the list of words to
the right.

http://flashgameu.com

ptg

So we’ll start with an empty grid and select random words from the list, random posi-
tions, and random directions. Then, we’ll try to insert the word. If it doesn’t fit, or it
overlaps letters already placed into the grid, the placement is rejected and another ran-
dom word, location, and direction are tried.

NOTE
Not all word search puzzles use all eight directions. Some do not have words back-
ward, and others don’t use diagonals. It is a matter of skill level. Simpler puzzles are
good for young children, but are much too easy for adults.

This loop repeats until either all the words are placed or a preset number of attempts
have been performed. This will avoid cases where there is no more space left for a
word. So, there is no guarantee that all the words will make it into the puzzle.

Our example uses only nine words, so it is unlikely to happen; but longer word lists will
have trouble. Huge word lists will only use a sample of the words available each time,
making the game more replayable by the same person.

After the words have been placed, all the unused letter positions are filled with
random letters.

Also, a list of the words included are placed on the right side of the screen. As words
are found, the ones in this list change color.

The player uses the mouse to click and drag on the grid. We’ll be drawing a line under
the letters to indicate which ones are selected. But, we’ll only be doing this for valid
selections. A valid selection would be horizontal, vertical, or at a 45-degree diagonal.
Figure 9.4 demonstrates the different directions in which a word can be placed.

Chapter 9: Word Games: Hangman and Word Search334

Figure 9.4
Valid selections can
go in eight different
directions.

After all the words have been found, the game ends.

ptg

Defining the Class
The game frame in the movie is completely blank. Everything will be created with
ActionScript. To do this, we need the flash.display, flash.text, flash.geom and
flash.events class libraries:
package {

import flash.display.*;
import flash.text.*;
import flash.geom.Point;
import flash.events.*;

Several constants will make it easy to adjust the puzzle size, spacing between letters,
outline line size, screen offset, and the text format:

public class WordSearch extends MovieClip {
// constants
static const puzzleSize:uint = 15;
static const spacing:Number = 24;
static const outlineSize:Number = 20;
static const offset:Point = new Point(15,15);
static const letterFormat:TextFormat = new

TextFormat("Arial",18,0x000000,true,false,
false,null,null,TextFormatAlign.CENTER);

To keep track of the words and the grid of letters, we’ll be using these three arrays:
// words and grid
private var wordList:Array;
private var usedWords:Array;
private var grid:Array;

The dragMode keeps track of whether the player is currently selecting a sequence of let-
ters. The startPoint and endPoint will define that range of letters. The numFound will
keep track of all the words found:

// game state
private var dragMode:String;
private var startPoint,endPoint:Point;
private var numFound:int;

This game will use several Sprites. The gameSprite holds everything. The others hold a
particular type of element:

// sprites
private var gameSprite:Sprite;
private var outlineSprite:Sprite;
private var oldOutlineSprite:Sprite;
private var letterSprites:Sprite;
private var wordsSprite:Sprite;

Word Search 335

ptg

Creating the Word Search Grid
The startWordSearch function has a lot of work to do in order to create a puzzle grid
for use in the game. It will rely on the placeLetters function to do some of the work.

The startWordSearch Function
To start the game, we’ll create an array with the words used in the puzzle. In this exam-
ple, we’ll use the nine planets, ignoring the International Astronomical Union’s feelings
about Pluto:
public function startWordSearch() {

// word list
wordList = ("Mercury,Venus,Earth,Mars,Jupiter,Saturn,Uranus,

Neptune,Pluto").split(",");

Next, the Sprites are created. They are in the order in which they should be layered
onto the stage. The outlines should be under the letters. Only the gameSprite is added
to the stage; all the others are added to the gameSprite:

// set up the sprites
gameSprite = new Sprite();
addChild(gameSprite);

oldOutlineSprite = new Sprite();
gameSprite.addChild(oldOutlineSprite);

outlineSprite = new Sprite();
gameSprite.addChild(outlineSprite);

letterSprites = new Sprite();
gameSprite.addChild(letterSprites);

wordsSprite = new Sprite();
gameSprite.addChild(wordsSprite);

The letter Sprites will be stored in the array grid. But, we’ll first call placeLetters to
get a nested array with the characters to be placed in these Sprites.

So, we are essentially dividing up the task of creating the game board into two steps.
The first step will create a virtual grid of letters as a nested array. This will take care of
adding the words from the word list and filling in the rest with random letters:

// array of letters
var letters:Array = placeLetters();

Now that we know where the letters will be placed, we need to create the Sprites, one
for each letter. First, each letter gets a TextField. Then, this field is added to a new
Sprite:

Chapter 9: Word Games: Hangman and Word Search336

ptg

// array of sprites
grid = new Array();
for(var x:int=0;x<puzzleSize;x++) {

grid[x] = new Array();
for(var y:int=0;y<puzzleSize;y++) {

// create new letter field and sprite
var newLetter:TextField = new TextField();
newLetter.defaultTextFormat = letterFormat;
newLetter.x = x*spacing + offset.x;
newLetter.y = y*spacing + offset.y;
newLetter.width = spacing;
newLetter.height = spacing;
newLetter.text = letters[x][y];
newLetter.selectable = false;
var newLetterSprite:Sprite = new Sprite();
newLetterSprite.addChild(newLetter);
letterSprites.addChild(newLetterSprite);
grid[x][y] = newLetterSprite;

In addition to being created and added to letterSprites, each Sprite must get two
events attached to it: MOUSE_DOWN and MOUSE_OVER. The first starts a selection, and the
second allows the selection to be updated as the cursor moves over different letters:

// add event listeners
newLetterSprite.addEventListener(

MouseEvent.MOUSE_DOWN, clickLetter);
newLetterSprite.addEventListener(

MouseEvent.MOUSE_OVER, overLetter);
}

}

When players release the mouse button, we can’t be sure that they are over a letter at
that moment. So, instead of attaching the MOUSE_UP event listener to the letters, we’ll
attach it to the stage:

// stage listener
stage.addEventListener(MouseEvent.MOUSE_UP, mouseRelease);

The last thing that needs to be created is the list of words to the right. This is just a col-
lection of TextField objects placed in the wordsSprite. One is created for each word in
the usedWords array. This array will be created by placeLetters and contain only the
words that could fit into the puzzle:

// create word list fields and sprites
for(var i:int=0;i<usedWords.length;i++) {

var newWord:TextField = new TextField();
newWord.defaultTextFormat = letterFormat;

Word Search 337

ptg

newWord.x = 400;
newWord.y = i*spacing+offset.y;
newWord.width = 140;
newWord.height = spacing;
newWord.text = usedWords[i];
newWord.selectable = false;
wordsSprite.addChild(newWord);

}

The game is ready to play, except for the dragMode and numFound variables that need to
be set:

// set game state
dragMode = "none";
numFound = 0;

}

The placeLetters Function
The placeLetters function performs some challenging tasks. First, it creates an empty
grid of 15x15 characters as a nested array. Each spot on the grid is filled with an *,
which will signify an empty space in the puzzle:
// place the words in a grid of letters
public function placeLetters():Array {

// create empty grid
var letters:Array = new Array();
for(var x:int=0;x<puzzleSize;x++) {

letters[x] = new Array();
for(var y:int=0;y<puzzleSize;y++) {

letters[x][y] = "*";
}

}

The next step is to make a copy of the wordList. We want to use a copy, rather than
the original, because we’ll be removing words as we place them in the grid. We’ll also
be placing the words we use into a new array, usedWords:

// make copy of word list
var wordListCopy:Array = wordList.concat();
usedWords = new Array();

Now it is time to add words into the grid. This is done by choosing a random word,
random location, and a random direction. Then, an attempt will be made to place the
word into the grid, letter by letter. If any conflict arises (for example, the edge of the
grid is reached, or an existing letter in the grid doesn’t match the letter we want to
place there), the attempt is aborted.

Chapter 9: Word Games: Hangman and Word Search338

ptg

We’ll keep trying, sometimes fitting a word in, and sometimes failing. We’ll do this until
the wordListCopy is empty. However, we’ll also track the number of times we’ve tried in
repeatTimes, which will start at 1,000 and decrease with every attempt. If repeatTimes
reaches zero, we’ll stop adding words. At that point, the chances are that every word
that will fit into the puzzle is already there. We won’t be using the rest of the words in
this random build.

NOTE
We’ll be using the technique of labeling the loops so that we can use the continue
command to force the program to jump to the start of a loop outside of the current
loop. Without these labels, it would be much harder to create the following code.

// make 1,000 attempts to add words
var repeatTimes:int = 1000;
repeatLoop:while (wordListCopy.length > 0) {

if (repeatTimes-- <= 0) break;

// pick a random word, location, and direction
var wordNum:int = Math.floor(Math.random()*wordListCopy.length);
var word:String = wordListCopy[wordNum].toUpperCase();
x = Math.floor(Math.random()*puzzleSize);
y = Math.floor(Math.random()*puzzleSize);
var dx:int = Math.floor(Math.random()*3)-1;
var dy:int = Math.floor(Math.random()*3)-1;
if ((dx == 0) && (dy == 0)) continue repeatLoop;

// check each spot in grid to see if word fits
letterLoop:for (var j:int=0;j<word.length;j++) {

if ((x+dx*j < 0) || (y+dy*j < 0) ||
(x+dx*j >= puzzleSize) || (y+dy*j >= puzzleSize))

continue repeatLoop;
var thisLetter:String = letters[x+dx*j][y+dy*j];
if ((thisLetter != "*") && (thisLetter != word.charAt(j)))

continue repeatLoop;
}

// insert word into grid
insertLoop:for (j=0;j<word.length;j++) {

letters[x+dx*j][y+dy*j] = word.charAt(j);
}

// remove word from list
wordListCopy.splice(wordNum,1);
usedWords.push(word);

}

Word Search 339

ptg

Now that we’ve got real words in the grid, the grid looks something like Figure 9.5,
which is a game that leaves out this next step.

Chapter 9: Word Games: Hangman and Word Search340

Figure 9.5
This grid has *
characters where
the random letters
will be placed.

The next loops look at every character in the grid and replaces the * with a random
letter:

// fill rest of grid with random letters
for(x=0;x<puzzleSize;x++) {

for(y=0;y<puzzleSize;y++) {
if (letters[x][y] == "*") {

letters[x][y] = String.fromCharCode(
65+Math.floor(Math.random()*26));

}
}

}

When the placeLetters function is done, it returns its array so that the Sprites can be
built from it:

return letters;
}

User Interaction
We’ll be using listeners to track three different mouse actions: click down, roll over a
new Sprite, and release.

Mouse Click
When the player clicks down on a letter, the position on the grid is determined and
placed into startPoint. Also, dragMode is set to "drag".

ptg

The findGridPoint function returns a Point with the position of the letter in the grid.
We’ll build that function later:
// player clicks down on a letter to start
public function clickLetter(event:MouseEvent) {

var letter:String = event.currentTarget.getChildAt(0).text;
startPoint = findGridPoint(event.currentTarget);
dragMode = "drag";

}

Cursor Drag
Every time the cursor passes over a letter on the screen, the following overLetter func-
tion is called. However, it first checks for dragMode to be equal to "drag". So, the bulk
of the function only happens after the player has clicked down on a letter.

The current point is stored in the endPoint. Now that we have both a startPoint and
an endPoint, we can check the range to see whether it is valid. We’ll assume it isn’t, by
clearing the outlineSprite graphic layer first. If it is a valid range, however,
drawOutline sets the outlineSprite graphic layer with a new line.

So, basically, the outline is removed and redrawn each time the cursor changes letters:
// player dragging over letters
public function overLetter(event:MouseEvent) {

if (dragMode == "drag") {
endPoint = findGridPoint(event.currentTarget);

// if valid range, show outline
outlineSprite.graphics.clear();
if (isValidRange(startPoint,endPoint)) {

drawOutline(outlineSprite,startPoint,endPoint,0xFF0000);
}

}
}

Mouse Release
When the player releases the mouse over a letter, the dragMode is set to "none", and the
outline is cleared. Then, assuming the range is valid, two functions are called to deal
with the selection.

The getSelectedWord function takes the range and returns the letters in it. Then, the
checkWord function will see whether this word is in the list and take action if it is:
// mouse released
public function mouseRelease(event:MouseEvent) {

if (dragMode == "drag") {
dragMode = "none";

Word Search 341

ptg

outlineSprite.graphics.clear();

// get word and check it
if (isValidRange(startPoint,endPoint)) {

var word = getSelectedWord();
checkWord(word);

}
}

}

Utility Functions
The findGridPoint function takes a letter Sprite and figures out which location it is at.
Because the Sprites are created from scratch, they cannot have dynamic variables
attached to them. Therefore, we can’t store each Sprite’s x and y value with it.

Instead, we’ll just look through the grid and find the item in the grid that matches
the Sprite:
// when a letter is clicked, find and return the x and y location
public function findGridPoint(letterSprite:Object):Point {

// loop through all sprites and find this one
for(var x:int=0;x<puzzleSize;x++) {

for(var y:int=0;y<puzzleSize;y++) {
if (grid[x][y] == letterSprite) {

return new Point(x,y);
}

}
}
return null;

}

To determine whether two points in the puzzle make up a valid range, we perform
three tests. If they are both on the same row or column, the range is valid. The third
test looks at the x and y difference. If they are equal, regardless of being positive or
negative, the selection is a 45-degree diagonal:
// determine if range is in the same row, column, or a 45-degree diagonal
public function isValidRange(p1,p2:Point):Boolean {

if (p1.x == p2.x) return true;
if (p1.y == p2.y) return true;
if (Math.abs(p2.x-p1.x) == Math.abs(p2.y-p1.y)) return true;
return false;

}

Drawing an outline behind the letters should be one of the more challenging aspects of
this game. But sometimes you get lucky. Thanks to the rounded ends that are the

Chapter 9: Word Games: Hangman and Word Search342

ptg

default for lines, we can simply draw a line from one location to the other, make it nice
and thick, and end up with a great-looking outline.

Note that some compensation is needed to place the ends of the line in the center of the
letters. The locations of the letters corresponds to the upper left of the TextField, and
thus the Sprite of the letters. So, half the spacing constant is added to compensate:
// draw a thick line from one location to another
public function drawOutline(s:Sprite,p1,p2:Point,c:Number) {

var off:Point = new Point(offset.x+spacing/2, offset.y+spacing/2);
s.graphics.lineStyle(outlineSize,c);
s.graphics.moveTo(p1.x*spacing+off.x ,p1.y*spacing+off.y);
s.graphics.lineTo(p2.x*spacing+off.x ,p2.y*spacing+off.y);

}

Dealing with Found Words
When players finish a selection, the first thing that happens is a word must be created
from the letters in their selection. To do this, we’ll determine the dx and dy between the
two points, which helps us pick the letters from the grid.

Starting from the startPoint, we’ll move one letter at a time. If the dx value is positive,
each step means moving over one column to the right. If negative, it means a step to
the left. Same for dy and up and down. This will take us in any of the eight possible
directions of a valid selection.

The end result is a string of letters, the same letters seen in the selection on screen:
// find selected letters based on start and end points
public function getSelectedWord():String {

// determine dx and dy of selection, and word length
var dx = endPoint.x-startPoint.x;
var dy = endPoint.y-startPoint.y;
var wordLength:Number = Math.max(Math.abs(dx),Math.abs(dy))+1;

// get each character of selection
var word:String = "";
for(var i:int=0;i<wordLength;i++) {

var x = startPoint.x;
if (dx < 0) x -= i;
if (dx > 0) x += i;
var y = startPoint.y;
if (dy < 0) y -= i;
if (dy > 0) y += i;
word += grid[x][y].getChildAt(0).text;

}
return word;

}

Word Search 343

ptg

After we know the word the user thinks he has found, we can loop through the
usedWords array and compare the found letters to the words. We must compare them
both forward and backward. We don’t want to place the restriction on the players that
they must select the first letter first, especially because we’ll be showing them some
words reverse on the grid.

To reverse a word, a quick way to do it is to use split to convert the string to an array,
then reverse to reverse the array, and then join to turn the array back into a string.
Both split and join take "", a blank string, as the separator, because we want every
character to be its own item in the array:
// check word against word list
public function checkWord(word:String) {

// loop through words
for(var i:int=0;i<usedWords.length;i++) {

// compare word
if (word == usedWords [i].toUpperCase()) {

foundWord(word);
}

// compare word reversed
var reverseWord:String = word.split("").reverse().join("");
if (reverseWord == usedWords [i].toUpperCase()) {

foundWord(reverseWord);
}

}
}

When a word is found, we want to permanently outline it and remove it from the list on
the right.

The drawOutline function can draw the line on any Sprite. So, we’ll have it draw the
line this time to oldOutlineSprite (using a lighter shade of red).

Then, we’ll loop through the TextField objects in wordsSprite and look at the text
property of each. If this matches the word, the TextField’s color is changed to a
light gray.

We’ll also increase numFound and call endGame if all the words have been found:
// word found, remove from list, make outline permanent
public function foundWord(word:String) {

// draw outline in permanent sprite
drawOutline(oldOutlineSprite,startPoint,endPoint,0xFF9999);

Chapter 9: Word Games: Hangman and Word Search344

ptg

// find text field and set it to gray
for(var i:int=0;i<wordsSprite.numChildren;i++) {

if (TextField(wordsSprite.getChildAt(i)).text.toUpperCase() == word) {
TextField(wordsSprite.getChildAt(i)).textColor = 0xCCCCCC;

}
}

// see if all have been found
numFound++;
if (numFound == usedWords.length) {

endGame();
}

}

The endGame function simply takes the main timeline to "gameover". We don’t want to
erase the game Sprites yet, but rather have them appear under the Game Over mes-
sage and Play Again button.

To make these items stand out better, I’ve placed them on a solid rectangle. Otherwise,
they would just blend in with the grid of letters (see Figure 9.6).

Word Search 345

Figure 9.6
The rectangle helps
the “Game Over”
text and button
stand out.

public function endGame() {
gotoAndStop("gameover");

}

The Play Again button will call cleanUp, as well as go to the play frame to restart the
game. Because we stored all our Sprites in the single gameSprite Sprite, we can just
get rid of that and clear the grid to clean up:
public function cleanUp() {

removeChild(gameSprite);

ptg

gameSprite = null;
grid = null;

}

Modifying the Game
Players’ interest in this game may be strongly related to their interest in the words. You
can create a puzzle for any subject. All it takes is a comma-separated word list.

In fact, you can use the technique from Chapter 2, “ActionScript Game Elements,” on
including variables in the HTML code of a web page to pass in a short word list. Thus,
a single word search game can be used on many pages of your site with a different
word list.

You can also easily adjust the dimensions of the puzzle and the size and spacing of the
letters. Doing so makes easier puzzles for children.

Another way to get word lists is to import them from external files. We’ll look at how to
import external data in the next chapter.

Chapter 9: Word Games: Hangman and Word Search346

