

Learn How to Think with
Karel the Robot

Learn How to Think with
Karel the Robot

Pavel Solin

Revision October 6, 2014

About the Author

Dr. Pavel Solin is Professor of Applied and Computational Mathematics at the Univer-
sity of Nevada, Reno. He has been programming computers for 25 years and directing
major open source software projects. He is the author of six monographs and many re-
search articles in international journals. Besides this, Dr. Solin enjoys very much work-
ing with K-12 teachers and students.

Acknowledgment

We would like to thank great teachers from NCLab Partner Schools for class-testing
Karel, and for providing useful feedback that is helping us to improve the textbook,
interactive exercises, and the Karel language itself.

Graphics Design:

TR-Design http://tr-design.cz

Copyright:

Copyright FEMhub Inc. All Rights Reserved.

Preface

Computer programming is lots of fun. Telling a machine what to do and watch it actu-
ally perform the task is amazing. Interacting with the computer will teach you how to
think, which is something that will make your life better in many ways. Programming
is all about breaking problems into simpler ones, and thinking how to solve them,
which is an extremely useful real life skill.

Why spend time with a training programming language if you can learn with the
"real stuff" such as C++ or Java? Indeed, these languages are much more powerful than
Karel the Robot. But they are not graphical, have complicated syntax, and you will end
up doing boring math problems in no time. In contrast to that, Karel the Robot was
designed to be graphical, have commands that are easy to type, and it does not contain
complicated math.

Karel the Robot was created at the Stanford University by R.E. Pattis who also wrote
the original textbook Karel the Robot: A Gentle Introduction to the Art of Programming in
the 1980s. His Karel was aimed at university-level students and the syntax was influ-
enced by Pascal, a major programming language of that era. We updated the language
while preserving Pattis’ original ideas. Our implementation is more oriented towards
K-12 students.

The syntax and programming style of NCLab’s Karel is similar to Python, a pop-
ular modern programming language that is used in many science, engineering, and
business applications today. After you earn your Black Belt in computer programming
with Karel, NCLab has a Python programming course for you, which is equally engag-
ing and fun as Karel the Robot.

Good luck!

Pavel Solin

Table of Contents

1 Earn Black Belt in Computer Programming! . 1
1.1 White Belt . 1
1.2 Yellow Belt . 2
1.3 Purple Belt . 2
1.4 Black Belt . 3
1.5 Red Belt . 3

2 Introduction . 4
2.1 Objectives . 4
2.2 Brief history . 4
2.3 Who is Karel? . 6
2.4 What will you learn in this course? . 6
2.5 Is Karel a toy language? . 7
2.6 How does Karel differ from other programming languages? 7

3 Launching Karel . 8
3.1 Objectives . 8
3.2 Main menu . 8
3.3 Karel modes . 9

4 First Steps . 10
4.1 Objectives . 10
4.2 Compass . 10
4.3 Control buttons . 10
4.4 Error messages . 11
4.5 Robot’s view . 11

5 Programming . 12
5.1 Objectives . 12
5.2 Typing commands . 12
5.3 Algorithm . 12
5.4 Program . 13
5.5 Logical and syntax errors . 14

6 Counting Loop . 15
6.1 Objectives . 15
6.2 Elegant way to walk . 15
6.3 Body of loop . 16
6.4 Mistakes in indentation . 17
6.5 Nested loops . 18

6.6 Walking around four blocks . 19
7 Working with Code and HTML Cells . 21

7.1 Objectives . 21
7.2 Code cells . 21
7.3 HTML cells . 22

8 Conditions . 24
8.1 Objectives . 24
8.2 The wall sensor . 24
8.3 The keyword not . 25
8.4 The gem sensor . 25
8.5 The tray sensor . 26
8.6 Repairing pavement . 27
8.7 Making the robot face any direction . 30

9 Conditional Loop . 31
9.1 Objectives . 31
9.2 Finding a lost gem . 31
9.3 Writing programs in steps . 32
9.4 Rock climbing . 32

10 Custom Commands . 34
10.1 Objectives . 34
10.2 Defining new commands . 34
10.3 Arcade game . 34

11 Variables . 38
11.1 Objectives . 38
11.2 Karel grows up . 38
11.3 Purpose of variables . 38
11.4 Types of variables . 38
11.5 Using the GPS device and the print command . 39
11.6 Defining custom functions . 41
11.7 Measuring the length of a wall . 42
11.8 Creating and initializing numerical variables . 43
11.9 Changing values of numerical variables . 44
11.10 Using functions inc() and dec() . 44
11.11 Comparison operations . 44
11.12 Text strings . 45
11.13 Local and global variables . 46

12 Lists . 48
12.1 Objectives . 48
12.2 Compatibility with Python . 48

12.3 Creating a list . 48
12.4 Accessing list items by their indices . 49
12.5 Appending items to a list . 50
12.6 Removing items via the pop() function . 50
12.7 Deleting items via the del command . 51
12.8 Length of a list . 51
12.9 Parsing lists . 52
12.10 Recording robot’s path . 52
12.11 Replaying robot’s path from a list . 54
12.12 Recording positions of gems . 56
12.13 Remark on lists containing lists . 58

13 Tour of Logic . 59
13.1 Objectives . 59
13.2 Simple logical expressions . 59
13.3 More complex logical expressions . 59
13.4 Truth tables . 60

14 Randomness . 62
14.1 Objectives . 62
14.2 Using random moves to search entire maze . 62

15 Recursion . 63
15.1 Objectives . 63
15.2 How it works . 63
15.3 The base case . 66
15.4 Diamond staircase revisited . 66
15.5 Mutually recursive commands . 67

16 Appendix - Overview of Functionality by Mode . 69
16.1 First Steps (Section 4) . 69
16.2 Programming Mode (Sections 5 – 15) . 69

17 What next? . 70

P. Solin Learn How to Think with Karel the Robot

1 Earn Black Belt in Computer Programming!

The best way to learn with Karel is to go through the interactive Karel Course in
NCLab, using this textbook as a reference. The course has four differential instruction
levels that ensure an exciting and fulfilling learning experience for all students - the
White, Yellow, Purple and Black Belts. While the White and Yellow Belts are designed
for all students to pass, earning the Black Belt requires a high level of determination.

1.1 White Belt

Every student begins his or her journey by completing seven warm up projects in
manual mode, earning the White Belt. Sample project Diamond Mine from this level
is shown below: Karel finds an abandoned diamond mine, and his task is to collect all
nine gems and return to his home square in less than 80 seconds:

1

P. Solin Learn How to Think with Karel the Robot

1.2 Yellow Belt

After earning the White Belt, students are invited to pursue the Yellow Belt. This is the
core of the course, designed for all students to pass. In order to earn the Yellow Belt,
students need to demonstrate knowledge of all major programming concepts, and an
ability to write simple computer programs. The following image shows the project
Square Shelf from this level, where Karel needs to move all gems into trays and return
to the home square:

1.3 Purple Belt

In the Purple Belt Level students revisit and reinforce some concepts learned previ-
ously, they learn additional advanced concepts, and use them to solve advanced pro-
gramming projects. The maze shown below corresponds to the project Curse of the
Pharaohs from this level. Here Karel stands at the cross-section of four tunnels in a
pyramid and he faces a random direction - either North, West, South or East. He knows
that only the West tunnel leads to the treasure while the remaining three contain deadly
traps. He has to be very careful as he does not have a map. The robot needs to reach
the end of the tunnel, collecting all gems on the way.

2

P. Solin Learn How to Think with Karel the Robot

1.4 Black Belt

The Black Belt Level includes challenging programming projects. Their complexity can
be illustrated on the sample project Arcade Game where Karel needs to collect all gems
in an arcade of random proportions.

1.5 Red Belt

Yes, there is a Red Belt Level too! It provides extremely difficult and sometimes open
problems for extremely talented young programmers. If you solve one of these prob-
lems, we will have a place for you in the NCLab Karel Hall of Fame!

3

P. Solin Learn How to Think with Karel the Robot

2 Introduction

2.1 Objectives

– Learn basic facts about the Karel language and its history.
– Learn how Karel differs from other programming languages.
– Learn what skills this course will give you.

2.2 Brief history

The educational programming language Karel the Robot was introduced by Richard E.
Pattis in his book Karel The Robot: A Gentle Introduction to the Art of Programming in 1981.
Pattis first used the language in his courses at Stanford University, and nowadays Karel
is used at countless schools in the world. The language is named after Karel Čapek, a
Czech writer who invented the word "robot" in his 1921 science fiction play R.U.R.
(Rossum’s Universal Robots). Various implementations of the language that can be
downloaded from the web are shown in Fig. 1.

Fig. 1: Various implementations.

The original Karel language was strongly influenced by Pascal, a popular language of
the 1980s. Since Pascal is no longer being used today, we refreshed the language and
adjusted its syntax to be close to Python, a modern high-level dynamic programming
language. Our changes made the language much easier to use. For illustration, com-
pare the original Karel program

4

P. Solin Learn How to Think with Karel the Robot

BEGINNING-OF-PROGRAM

DEFINE turnright AS
BEGIN

turnleft
turnleft
turnleft

END

BEGINNING-OF-EXECUTION
ITERATE 3 TIMES
BEGIN

turnright
move

END
turnoff

END-OF-EXECUTION

END-OF-PROGRAM

with its exact NCLab’s Karel equivalent

def turnright
repeat 3

left

repeat 3
turnright
go

In fact, NCLab’s Karel has a built-in command right for the right turn, so the above
program can be written using just three lines:

repeat 3
right
go

The command right was not part of the original Karel language – it was added af-
ter a very careful consideration. The main reason for adding it was that it made Karel

5

P. Solin Learn How to Think with Karel the Robot

more pleasant to watch as he moves through the maze. Without this command, any
right turn took three left turns, and as a result, Karel resembled a raging tornado. Of
course, orthodox Karel fans can still define and use their own rightturn command.
We made a few additional changes to the language in order to make it more accessible
to kids – beepers were replaced with gems, Karel has a home in the maze, and there is
a new object tray that makes it clear where the robot should put gems. Longer com-
mands were replaced with shorter ones, such as leftturn with left, move with go,
pickbeeper with get, and putbeeper with put. Karel’s syntax is virtually identi-
cal to Python, with the exception of colons in conditions, loops, and new commands –
they were left out since our youngest programmers had difficulty typing them.

2.3 Who is Karel?

Karel is a little robot that lives in a maze and loves to collect gems. He was manufac-
tured with only five simple commands in his memory:

– go ... make one step forward.
– get ... pick up a gem from the ground.
– left ... turn left.
– right ... turn right.
– put ... put a gem on the ground.

He also has six built-in sensors that allow him to check his immediate surroundings:

– wall ... helps the robot detect a wall right ahead of him.
– gem ... helps the robot detect a gem beneath him.
– tray ... helps the robot detect an empty tray beneath him.
– north ... helps the robot detect that he is facing North.
– home ... helps the robot detect that he is at home.
– empty ... helps the robot detect that his bag with gems is empty.

2.4 What will you learn in this course?

Computer programming skills are highly valued today, and they will be even more
valued in the future. Karel is the perfect language for beginners. It will teach you how
to design algorithms and write working computer programs without struggling with
technical complications of mainstream programming languages. Thanks to its simplic-
ity, you should be done with Karel fairly quickly, and in no time you will be ready to
move on to other languages. NCLab offers a Python programming course.

6

P. Solin Learn How to Think with Karel the Robot

2.5 Is Karel a toy language?

Absolutely not! Despite its playful appearance, Karel features all key concepts of mod-
ern procedural programming. Technically speaking, it is a complete Turing machine.
As a matter of fact, the complexity of algorithms that you will encounter in this text-
book ranges from very simple to very hard.

2.6 How does Karel differ from other programming languages?

The biggest conceptual difference between Karel and mainstream procedural program-
ming languages such as Python, C, C++, Java or Fortran is that the robot does not know
math. This is because Math is not needed to understand how to design great algorithms
and to translate them into efficient computer programs.

7

P. Solin Learn How to Think with Karel the Robot

3 Launching Karel

3.1 Objectives

– Learn to launch Karel and work with the graphical application.
– Learn that Karel has several modes and how they differ.

The simplest way to launch Karel is to double click on the Programming icon on Desk-
top and select Karel in the menu. This will launch the module in Programming Mode
with a demo program, as shown in Fig. 2.

Fig. 2: The Karel module launches with a demo program.

From Programming Mode, one can switch to First Steps, Designer, and Games. These
modes will be discussed in more detail in Paragraph 3.3.

3.2 Main menu

The application window contains the main menu on top, work area on the left, maze
on the right, and status bar on the bottom. The menus are fairly intuitive, so let us
explain just a few selected functions. In the File menu:

– Under Learning materials you will find this textbook, interactive exercises, and in-
structors have access to solution programs.

– New will create a new Karel file.
– Open will open an existing Karel file.

8

P. Solin Learn How to Think with Karel the Robot

– Save in NCLab will save your file in your NCLab account.
– Publish to the web will create a static HTML link for your project.

The Maze menu facilitates operation with mazes, including creating a new random
one, duplicating an existing maze, restoring maze to its saved version, and save and
remove maze. The Edit menu enables operation with code cells and HTML cells (to be
discussed in Section 7). In Settings one can change Karel’s speed, adjust sound prefer-
ences, etc.

The green and red buttons are used to run and stop programs, respectively, and
the two buttons next to them on the right can be used to increase and decrease font
size. The triplet of icons on far right are the operations counter, step counter, and gem
counter.

3.3 Karel modes

The module operates in four modes:

– In First Steps, Karel is controlled using the mouse. Watch out and do not crash!
– In Programming Mode, the robot is controlled using written commands.
– Designer allows users to create custom mazes.
– Game Mode allows users to create and share games.

9

P. Solin Learn How to Think with Karel the Robot

4 First Steps

4.1 Objectives

– Review directions on the compass.
– Learn to guide the robot by clicking on buttons.
– Learn about error messages.
– Learn to work with left and right from the robot’s point of view.
– Learn to plan your actions ahead of time.

4.2 Compass

Fig. 3 shows the four directions on the compass: North, South, West, and East.

Fig. 3: Four directions on the compass.

4.3 Control buttons

After launching Karel, switch to First Steps. The following five buttons will appear in
the left panel:

Fig. 4: Karel’s buttons in First Steps (robot facing East).

10

P. Solin Learn How to Think with Karel the Robot

Pressing left will turn the robot 90 degrees to the left, pressing right will turn him
90 degrees to the right. These two buttons never can cause an error, but the others can.

4.4 Error messages

Pressing go will advance the robot one step forward. If he crashes into a wall, he will
throw an error message:

Fig. 5: Error messages appear in the bottom-left corner.

Upon pressing put, the robot will reach into his bag and put a gem on the ground. If
his bag is empty, he will throw an error message as well. An indicator showing how
many gems are in the bag can be found in the upper right corner of the window. Last,
pressing get makes the robot pick up a gem from the ground. If there is no gem to
collect, he will throw an error message.

4.5 Robot’s view

When the robot turns, the arrows on the buttons adjust automatically to reflect his view
of things. This is illustrated in Fig. 6.

Fig. 6: Karel’s buttons in First Steps (robot facing West).

11

P. Solin Learn How to Think with Karel the Robot

5 Programming

5.1 Objectives

– Write your first computer program.
– Learn the difference between algorithm and program.
– Learn the difference between logical and syntax errors.
– Learn that debugging is an indivisible part of computer programming.

5.2 Typing commands

Commands are entered into a code cell that is located in the left panel. In Programming
Mode, we can use the commands left, right, go, get, put, repeat, and many
more. One or more commands form a computer program or computer code. There are two
simple rules to remember:

1. Always type one command per line.
2. Indentation matters - every command starts at the beginning of line.

Following these rules will make your code clean and well readable.

5.3 Algorithm

Karel always follows your commands exactly. No exceptions. If the robot does some-
thing wrong, such as crashing into a wall, then most likely it was not his mistake but
yours. Your algorithm was wrong.

Algorithm is a sequence of logical steps that leads to the solution of the given task.

Algorithms are written using common human language. Consider a maze shown in
Fig. 7. Karel’s task is to pick up the gem and return to his home square.

Fig. 7: Collect the gem and get home!

12

P. Solin Learn How to Think with Karel the Robot

This task can be solved using the following algorithm:

Make two steps forward
Collect the gem
Turn around
Make three steps forward

In the next paragraph, we will convert this algorithm into a computer program.

5.4 Program

Translating an algorithm to a particular programming language
yields a computer program.

In our case this is the Karel language of course. One possible program corresponding
to the above algoritm is:

go
go
get
left
left
go
go
go

Often there is more than one way to translate an algorithm to a computer program. For
example, the above algorithm can be also translated to

go
go
right
get
right
go
go
go

13

P. Solin Learn How to Think with Karel the Robot

5.5 Logical and syntax errors

Mistakes in algorithms are called logical errors.

Let’s return to the setting shown in Fig. 7 and consider the algorithm

Make three steps forward
Collect the gem
Turn around
Make three steps forward

This makes the robot crash! We made a mistake in the planning – a logical error.

Mistakes in programs, such as misspelling a command, writing "1O" instead of "10",
or forgetting indentation are called syntax errors.

Find three syntax errors in the following program!

go
go
got
r1ght
night
go
go
go

Mistakes or either kind are called bugs and the procedure of eliminating them is called
debugging. Depending on how careful we were while preparing our algorithm and
writing the program, debugging takes either a short time or a long time. It does not
happen often that a program works correctly right away.

Of logical and syntax errors, the former are harder to find. Therefore, always make
sure to design a good algorithm and to think it through, before you start coding.

When our program contains a syntax error, the robot outputs an error message and does
nothing. When the algorithm contains a logical error, then various things may hap-
pen: The robot may execute the program without fulfilling the goals. Or, he may do
something that will trigger and error message and stop program execution.

14

P. Solin Learn How to Think with Karel the Robot

6 Counting Loop

6.1 Objectives

– Learn to make the robot repeat something a given number of times.
– Learn what body of loop means and that indentation matters.

Counting loops are present in all procedural programming languages and they allow
us to repeat some command, or a sequence of commands, a given number of times.

In Karel, counting loops are written using the command repeat. Some other lan-
guages use different commands, but the idea is always the same.

6.2 Elegant way to walk

Look at the following maze where Karel needs to collect a gem and return to his home
square.

Fig. 8: Repeating an action a given number of times.

Of course we could type

go
go
go
go
go
go
go
go
go
go
get
left
left

15

P. Solin Learn How to Think with Karel the Robot

go
go
go
go
go
go
go
go
go
go
go

But such program would not get you hired as a computer programmer! Namely, the
same goal can be accomplished much more elegantly, by telling Karel to repeat the
go command 10 times, get the gem, turn back, and repeat the go command another
11 times:

repeat 10
go

get
repeat 2

left
repeat 11

go

That’s it! Are you wondering why some commands are indented? We will explain this
right now.

6.3 Body of loop

Commands to be repeated are called the body of the loop. In Karel, the body of the
loop is defined by indentation. This is the same as in Python. Some other languages

use other ways, for example C/C++ use curly braces.

In the above program, each loop’s body is formed by a single command, but if there
were more of them, all of them would be indented. In Karel, you can choose between a
2-indent and a 4-indent. The former yields more compact code with not-so-long lines,
but the latter is easier to read.

16

P. Solin Learn How to Think with Karel the Robot

6.4 Mistakes in indentation

A mistake in indentation can change the body of a loop, and consequently the entire
program may end up doing something unexpected. For illustration, assume the maze
shown in Fig. 9. Karel’s task is to walk around the block and stop in the upper left
corner, facing South.

Fig. 9: Karel walks around the block.

This can be done using the following four lines of code:

repeat 3
go
go
left

The robot’s position after executing the program is shown in Fig. 10.

Fig. 10: Karel’s position after executing the program.

Now let’s unindent the last command as if by mistake:

17

P. Solin Learn How to Think with Karel the Robot

repeat 3
go
go

left

Now the robot is told to make six steps forward and then turn to the left – which makes
him crash right into the wall!

Fig. 11: Mistake in indentation causes the robot to crash.

There is an error message telling where in the code the problem occurred:

Ouch, you crashed me!
Line 2: go

6.5 Nested loops

In the last two programs, the go command was written on two consecutive lines. This
is OK since with the repeat command we would also need two lines. But consider the
situation shown in Fig. 12 and imagine that Karel has to walk around the block now,
returning to his original position.

18

P. Solin Learn How to Think with Karel the Robot

Fig. 12: Walk around a larger block.

Writing the go command inside the repeat loop on five consecutive lines would not
be OK – the code would be much longer than necessary. The following code does the
job elegantly:

repeat 4
repeat 5

go
left

When a loop is used within another loop’s body, we say that the loops are nested.
Notice that the same indentation scheme applies to each of the two loops.

6.6 Walking around four blocks

Let’s look at one last example: Karel stands at the intersection of two streets that sep-
arate four blocks, as shown in Fig. 13. His task is to walk around the first block until
he reaches the intersection, walk around the second block until he reaches the intersec-
tion, and so on, until he is finished with all four blocks.

19

P. Solin Learn How to Think with Karel the Robot

Fig. 13: Standing on an intersection.

This can be done using the following program:

repeat 4
repeat 4

repeat 5
go

left
right

Take your time to build this maze and run the program, it is worth the time!

20

P. Solin Learn How to Think with Karel the Robot

7 Working with Code and HTML Cells

7.1 Objectives

– Learn how to add and use new code cells and HTML cells.
– Learn how to change the order of cells.
– Learn how to run all code cells at once, and how to run them individually.
– Learn how to clear, collapse, remove and merge cells.

7.2 Code cells

So far we have worked with a single code cell, but having multiple code cells can be
useful when we want to run different parts of our program separately. While the green
arrow button in the main menu runs all code cells (one after another), each code cell
also has its own green arrow button beneath it, that runs just that cell and nothing else.

It is also possible to insert descriptive HTML cells between code cells. Fig. 14 shows
a sample code cell including its bottom menubar.

Fig. 14: Sample code cell.

Left to right, the icons under the code cell have the following meaning:

– Run the program in this particular code cell.
– Stop the code cell (this icon becomes active when the program is running).
– Move the cell under the one below it (changes the order of cells in the worksheet).
– Move the cell above the one above it (changes the order of cells in the worksheet).
– Duplicate the cell (new code cell with the same contents is created).
– Clear the cell (erase all contents).
– Add empty code cell under the cell.
– Add empty HTML cell under the cell.
– Remove the cell.
– Collapse the cell.

21

P. Solin Learn How to Think with Karel the Robot

7.3 HTML cells

HTML cells use a WYSIWYG text and HTML editor to add descriptions and illustra-
tions to the worksheet. Fig. 15 shows a sample HTML cell.

Fig. 15: Sample HTML cell.

This cell has two menus. The top one is related to text editing and inclusion of images,
the bottom one is analogous to the menu of code cells. Let us begin with the top menu:
Left to right, the buttons and icons have the following meaning:

– Select text font.
– Make selected text boldface.
– Make selected text italics.
– Underline selected text.
– Increase font size for selected text.
– Decrease font size for selected text.
– Choose foreground text color
– Choose background text color
– Align text left
– Center text
– Align text right
– Add a hyperlink.
– Create enumerated list.
– Create bullet list.
– Edit source HTML code. This is also how images can be added via external links.

The bottom menu, left to right:

– Save the HTML cell.

22

P. Solin Learn How to Think with Karel the Robot

– Edit the HTML cell.
– Move the cell under the one below it (changes the order of cells in the worksheet).
– Move the cell above the one above it (changes the order of cells in the worksheet).
– Duplicate the cell (new HTML cell with the same contents is created).
– Clear the cell (erase all contents).
– Add empty code cell under the cell.
– Add empty HTML cell under the cell.
– Remove the cell.
– Collapse the cell.

Additional operations with cells such as their merging can be done via the Edit menu.

23

P. Solin Learn How to Think with Karel the Robot

8 Conditions

8.1 Objectives
– Understand the role of conditions in programming.
– Learn to use Karel’s sensors in conjunction with conditions to help the robot check

his surroundings and react accordingly.

Conditions are present in every programming language. Their purpose is to make de-
cisions while the program is running, and handle various unexpected situations. In
Karel’s case, conditions will usually be related to checking his surroundings via the
sensors wall, gem, tray, empty, north and home.

8.2 The wall sensor

The wall sensor helps the robot determine whether or not there is a wall right in front
of him. The usage of this sensor can be illustrated using a simple program "Careful
step": If there is wall in front of you, turn back, else make one step forward. Note the
user comment following the hash symbol #. Comments are not part of the program -
in other words, the program below has five lines:

Program "Careful step".
if wall

repeat 2
left

else
go

Imagine that Karel stands in front of a gem as shown in Fig. 16.

Fig. 16: Karel’s initial position.

Now let us run the program three times by clicking three times on the green arrow
button. Here is a sequence of Karel’s positions after each evaluation:

24

P. Solin Learn How to Think with Karel the Robot

Fig. 17: Left to right – Karel’s positions after executing the program "Careful step" one,
two, and three times.

8.3 The keyword not

Karel can utilize the keyword not (negation) in conditions. For illustration, the last
program can be rewritten as follows, without changing its function:

Program "Careful step".
if not wall

go
else

repeat 2
left

8.4 The gem sensor

The gem sensor allows Karel to detect a gem on the ground beneath him. The gem must
lie in the same square – the robot cannot see what is one or more steps ahead. Consider
the situation shown in Fig. 16 again:

Fig. 18: Karel’s initial position, same as before.

25

P. Solin Learn How to Think with Karel the Robot

Let’s extend the program "Careful step" in such a way that Karel picks up the gem on
the way:

Program "Careful step II".
if gem

get
if wall

repeat 2
left

else
go

The sequence of Karel’s positions after each evaluation is shown in Fig. 19.

Fig. 19: Left to right – Karel’s positions after executing the program "Careful step II"
one, two, and three times.

8.5 The tray sensor

The tray sensor allows Karel to detect an empty tray beneath him. A tray that is filled
with a gem will not be detected. As with gems, there may be more than one tray in a
square. Let’s consider the situation shown in Fig. 20 where the home square is 10 steps
ahead of Karel. The positions of the gem and of the tray are random but Karel knows
that the gem comes first. It is his task to find the gem, move it on the tray, and enter the
home square.

Fig. 20: Karel’s task is to find the gem, and move it on the tray.

26

P. Solin Learn How to Think with Karel the Robot

The program looks as follows:

repeat 10
go
if gem

get
if tray

put

8.6 Repairing pavement

The empty sensor allows the robot to check whether his bag is empty, or, in the combi-
nation with the keyword not, whether his bag contains at least one gem. Imagine that
Karel’s block has four houses with pavements around them, as shown in Fig. 21. After
the winter the pavements are damaged and some tiles (gems) are missing. Karel has an
unknown number of tiles in his bag. Write a program for him to repair the pavements.
Your program should not throw an error if Karel runs out of gems!

Fig. 21: Karel is repairing pavement.

27

P. Solin Learn How to Think with Karel the Robot

We can use the program from Subsection 6.6 as the basis for our new program. First
let’s adjust the numbers of repetitions in the loops to match the current layout of the
maze. In fact just the deepest one needs to be changed from five to four since the new
blocks are only three units long. The other two loops remain unchanged since each
square has still four edges and there are four squares as before. So the new program is:

repeat 4
repeat 4

repeat 4
go

left
right

This will work, but Karel will not be doing any repairs, just walk all pavements and
return to his initial position. To repair the pavement, we need to insert an additional
condition in front of each go command:

repeat 4
repeat 4

repeat 4
if not gem

put
go

left
right

Is this program OK? Not yet! If the number of gems in Karel’s bag is less than the num-
ber of missing tiles in the pavement, the program will stop with an error message. So,
we need to check the empty sensor before each put command. The final program has
the form:

28

P. Solin Learn How to Think with Karel the Robot

repeat 4
repeat 4

repeat 4
if not gem

if not empty
put

go
left

right

Good job! Fig. 22 shows the pavement after the program is execured. Before running
the program, we inserted 15 gems into Karel’s bag in Designer.

Fig. 22: After running the program, the pavement is repaired!

Try to return to the maze from Fig. 21 and run this program with just 10 gems in the
robot’s bag! What is supposed to happen?

29

P. Solin Learn How to Think with Karel the Robot

8.7 Making the robot face any direction

This sensor can be used not only to check if the robot faces North, but also to make him
face any given direction. For this, we always must make him face North first, because
this is the only direction he can verify. Let’s write a program that makes the robot face
South no matter which direction he is currently facing!

Fig. 23: Karel faces a random direction.

The program uses the fact that in any situation, at most three left turns are enough to
make the robot face North:

First turn North:
repeat 3

if not north
left

Then turn South:
repeat 2

left

30

P. Solin Learn How to Think with Karel the Robot

9 Conditional Loop

9.1 Objectives

– Learn to repeat a command or a sequence of commands until some goal is achieved,
not knowing in advance how many repetitions will be needed.

The conditional loop (while loop) is present in all procedural programming languages.
It allows us to repeat some action without knowing in advance how many repetitions
will be needed. This can be the case, for example, when Karel needs to walk straight to
the nearest wall. He cannot measure the distance to a wall that is farther ahead, so this
task cannot be accomplished using the repeat loop.

9.2 Finding a lost gem

To demonstrate the usage of the while loop, consider the situation shown in Fig. 24
where Karel stands at a random position in a maze without walls. Last time he walked
the perimeter of the maze, Karel lost a gem somewhere. He does not know where the
gem is - he only knows that it lies somewhere at the outer wall. Let us write a program
for the robot to find and collect his lost gem!

Fig. 24: There is only one gem, located somewhere at the exterior wall.

This can be done using five lines of code:

31

P. Solin Learn How to Think with Karel the Robot

while not gem
while not wall

go
left

get

9.3 Writing programs in steps

Is it difficult to write a program like the one above? Not at all! But it is important to
build it in several steps, rather than trying to write it all at once. That’s how even the
most experienced computer programmers do it. As Step 1, write a loop that brings the
robot to the outer wall. Clearly, this needs to be done as that’s where the gem is. And,
we also turn the robot left (could be right), because facing the wall would not get us
anywhere:

while not wall
go

left

Looking at this loop, we realize that it also can be used to bring the robot to the next
corner, where he will turn left again. This is great, because he can just repeat this loop
until he finds the gem! Hence as Step 2, we include an outer loop:

while not gem
while not wall

go
left

As the last Step 3, Karel needs to collect the gem that he found. Hence we arrive at the
original program from above:

while not gem
while not wall

go
left

get

9.4 Rock climbing

This time Karel stands in front of a high cliff:

32

P. Solin Learn How to Think with Karel the Robot

Fig. 25: Karel is climbing rocks.

He knows that there is a gem up there, and wants it, but he does not know how high
the cliff is, or the exact position of the gem. Let’s help the robot climb the cliff and
collect the gem!

This can be done using seven lines of code:

while wall
left
go
right

while not gem
go

get

As an exercises, extend this program by a second part where Karel gets back down to
his initial position!

33

P. Solin Learn How to Think with Karel the Robot

10 Custom Commands

10.1 Objectives

– Learn to split complex tasks into smaller ones.
– Learn to use custom commands as it makes programs simpler.

When writing a new program, it is a good idea to check whether it contains simpler
tasks that can be solved first. If so, solve them, and create a custom commands (sub-
programs) for them. Then, suddenly, the original task does not appear that difficult
anymore! We will give an example after showing how new commands are defined:

10.2 Defining new commands

New commands are defined using the reserved word def. For example, in a program
where the robot needs to turn back in various situations, it is a good idea to define a
new command turnback:

def turnback
repeat 2

left

Note that the body of a new command needs to be indented analogously to the body
of loops and conditions.
In another program, the robot may need to frequently collect all gems that lie on the
ground beneath him. For that we can define a new command getall:

def getall
while gem

get

The newly defined commands can be used as any other commands in our programs.

10.3 Arcade game

This time Karel needs to go through several floors of an arcade game shown in Fig.
26, collect all gems, and enter his home square which is located at the East end of the
top floor. There is only one opening between each two floors. Initially, the robot stands
somewhere in the first floor. This example is available under Examples in Learning
resources for Karel.

34

P. Solin Learn How to Think with Karel the Robot

Fig. 26: Karel is playing an arcade game.

Clearly, this problem is more complex than anything we solved before. So, let us first
look for smaller tasks that the robot will be doing in each floor. For sure, he will need to
turn around from time to time, so let’s start with introducing the turnback command:

New command to turn back:
def turnback

repeat 2
left

Since the robot does not know the exact positions of gems, he will always need to
sweep the entire floor. Let’s introduce a new command for this. We will assume that
the robot stands at the West end of the floor, facing East:

Sweep one floor from left to right.
Assumes that robot stands at the
West end, facing East:
def sweep

while not wall
while gem

get
go
Do not forget gems in the last square:
while gem

get

35

P. Solin Learn How to Think with Karel the Robot

Next we need a new command that will move the robot to the West end of the floor
and make him face East, as required by the command sweep. Let us call this new com-
mand gowest

Reach West end of the current floor
and turn around to face East:
def gowest

Turn West:
while not north

left
left
Go to West end:
while not wall

go
Turn around:
turnback

Almost there! The last new command we need is to get to the next floor. Let us call it
moveup:

Find the opening and move one
floor up. Assumes that robot is
at the East end of a floor,
facing East:
def moveup

if not home
Face North:
left
Find opening:
while wall

left
go
right

Pass through opening:
go

In the last step we put together the previously defined commands gowest, sweep and
moveup to define a new command arcade:

36

P. Solin Learn How to Think with Karel the Robot

Main procedure:
def arcade

while not home
gowest
sweep
moveup

The main program includes just the command arcade:

Main program:
arcade

Fig. 27 shows the arcade after the program has finished:

Fig. 27: Arcade after our program has finished.

37

P. Solin Learn How to Think with Karel the Robot

11 Variables

11.1 Objectives

– Learn the purpose of variables in computer programming.
– Learn to work with numerical and logical variables and text strings.
– Learn to define and use functions that return values.
– Learn the difference between global and local variables.

11.2 Karel grows up

Karel grew up and left the home of his parents to experience life on his own. Therefore,
the robot’s home square usually will not be present in the maze. There are additional
changes that reflect Karel’s growing up – there is a GPS device that he can use to de-
termine his position in the maze, he can print messages, work with variables and lists,
employ functions that return values, use complex logical operations, make random de-
cisions, and more. A compact overview of all programming functionality can be found
in Section 16.

11.3 Purpose of variables

In programming, variables are used to store useful information for later use. To give
a few examples, this information can be a number, word, sentence, or a logical value
(True or False). Variables can be rather complex - we will encounter lists where mul-
tiple values can be stored, such as the robot’s path, positions of gems in the maze, etc.

11.4 Types of variables

All of us use variables in our lives. One of the first ones is our own name.

Text strings

Say that your name is "Melissa". When you were about two years old, you saved your
own name in your memory. Using computer language, you defined a new variable
my_name as follows:

my_name = "Melissa"

The variable my_name stores a text string (string of characters).

38

P. Solin Learn How to Think with Karel the Robot

Numbers

Later in life we learn about various important numbers such as

seconds_per_minute = 60

or minutes_per_hour whose value is 60 as well, hours_per_day whose value is
24, and so on. But we also use variables whose values change, such as days_per_year,
number_of_my_pets, etc. In Karel, we will only use integers (not general real num-
bers) as the purpose of the language is not to do math.

Logical variables

Logical variables can only store two possible values, either True or False. We use
many of them in our lives:

I_have_a_dog = True
I_own_a_car = False

Of course, for someone else these variables will have different values. Logical variables
and operations will be discussed in more detail in Section 13.

11.5 Using the GPS device and the print command

Karel can retrieve his coordinates at any time via the commands gpsx and gpsy. He
also has a new ability to output text messages via the print command. The usage of
these commands can be illustrated using a short program where Karel determines his
coordinates in the maze and prints them:

print "Horizontal position:", gpsx
print "Vertical position:", gpsy

For the maze shown below,
the above program will have the following output:

Horizontal position: 0
Vertical position: 0

The maze width (in west-east direction) is 15 tiles, and its height (in south-north direc-
tion) is 12 tiles. If Karel stands in the north-east corner as shown in Fig. 29,

39

P. Solin Learn How to Think with Karel the Robot

Fig. 28: South-west corner of the maze has GPS coordinates [0, 0].

Fig. 29: North-east corner of the maze has GPS coordinates [14, 11].

then the output of the program is

Horizontal position: 14
Vertical position: 11

Move Karel to other parts of the maze and run the program again, to make yourself
familiar with how the GPS device works!

40

P. Solin Learn How to Think with Karel the Robot

The print command can be used to display more complicated sentences where text
and variables are separated by commas:

print "My GPS coordinates are", gpsx, "and", gpsy

Which, for the above maze, produces the output:

My GPS coordinates are 14 and 11

11.6 Defining custom functions

We can use the keyword return in the body of a command to return a value. Such
commands are called functions. They are also defined using the keyword def. For ex-
ample, with the following function countsteps the robot will walk straight towards
the closest wall and return the number of steps he needed to reach it:

def countsteps
n = 0
while not wall

go
inc(n)

return n

Notice couple of things here:

– The variable n was created and initialized by 0 using n = 0. In Karel, we do not
have to state the type of a variable in advance – the interpreter will figure it out
from the type of value that is first assigned to it.

– The inc() function increases the value of an integer variable by one. There is also
a function dec(), not used in the above program, that decreases the value of an
integer variable by one. More about these two functions will be said in Paragraph
11.10.

The function can then be used as follows:

num = countsteps
print "I reached wall in", num, "steps!"

Here, we create a new variable num and initialize it using the integer value that is
returned by the function countsteps. The result is then printed. For the situation

41

P. Solin Learn How to Think with Karel the Robot

shown in Fig. 29, the output is

I reached wall in 11 steps!

11.7 Measuring the length of a wall

Here, Karel’s task is to measure and print the length of an arbitrary wall. The wall has
a beginning and an end, does not contain loops, the robot faces the first wall segment,
and the wall continues to the robot’s left as shown in Fig. 30:

Fig. 30: Measuring the length of an arbitrary wall.

This task can be solved using the following function measurewall that has 13 lines:

42

P. Solin Learn How to Think with Karel the Robot

Function to measure the length
of an arbitrary wall:
def measurewall

l = 0
while wall
inc(l)
left
if not wall

go
right
if not wall
go
right
if not wall

return l

Call the function:
print "Length of wall is", measurewall

Running the program with the maze from Fig. 30, we obtain:

Length of wall is: 53

This example is available in Learning resources to the Karel module. Change the wall
and see if the program still works correctly!

11.8 Creating and initializing numerical variables

In Karel, numerical variables can be created and initialized in several different ways:

1. By setting them to an integer number. For example, a new variable a is created and
set to zero as follows:

a = 0

2. By setting them to gpsx. New variable posx is created and set to gpsx by typing

posx = gpsx

43

P. Solin Learn How to Think with Karel the Robot

3. By setting them to gpsy. New variable posy is created and set to gpsy via

posy = gpsy

4. Initialize them with an existing value. If there already is an integer variable var1,
then a new variable var2 can be created as follows:

var2 = var1

5. Initialize them with value returned by an existing function. Using the function
countsteps from the previous paragraph, we can type:

num = countsteps

11.9 Changing values of numerical variables

The value of a numerical variable can be updated at any time by redefining it via one
of the five options described in the previous paragraph.

11.10 Using functions inc() and dec()

Karel does not know mathematical symbols ’+’ and ’-’. But for counting purposes, he
can increase and decrease the value of an integer variable by one using the functions
inc() and dec(), respectively. He can also increase and decrease the value of a vari-
able by more than one via inc(n, num) and dec(n, num), where n is the name of
the variable and num is an integer number.

11.11 Comparison operations

Integer numbers and numerical variables can be compared using the standard op-
erators >, <, >=, <=, ==, !=, <>. In this order, they read "greater than", "less
than", "greater than or equal to", "less than or equal to", "equal to", "not equal to" and
"not equal to" (the last two operations have the same meaning). The result of each such
operation is a logical value True or False, and it can be either used in a condition or
conditional loop, or assigned to a variable. For example,

a = 1
b = 5
print a < b

44

P. Solin Learn How to Think with Karel the Robot

yields the output

True

The code

a = 1
b = 5
c = a > b
print c

yields

False

The code

a = 0
while a <= 5

print a
inc(a)

yields

0
1
2
3
4
5

11.12 Text strings

Text string variables are created and initialized analogously to the numerical ones:

robots_name = "Karel"

45

P. Solin Learn How to Think with Karel the Robot

They can be printed as usual. The code

print "Robot’s name is", robots_name

yields

Robot’s name is Karel

A text string variable can be used to initialize a new one. Let’s say that someone wants
to rename the robot to "Carlos" (which is the Spanish version of "Karel"), and store his
original name in the variable robots_name_orig. This is done as follows:

robots_name_orig = robots_name
robots_name = "Carlos"

11.13 Local and global variables

A variable that is created within a function is local to that function, meaning that it can
be used in the function only. If we attempt to use it outside of that function, an er-
ror is thrown. The following code creates a local variable a within a function called
myfunction:

def myfunction
a = 1
return

myfunction
print a

When run, the code throws an error message:

Unknown variable/procedure "a"

On the other hand, variables created within the main program are global. Global vari-
ables can be used in functions. For illustration, let us adjust the above program to:

46

P. Solin Learn How to Think with Karel the Robot

def myfunction
print "b =", b
return

b = 5

myfunction

The output of this program is:

b = 5

One should use local variables whenever possible, as this keeps the code safe and
well organized. Use of global variables should be kept at a minimum.

47

P. Solin Learn How to Think with Karel the Robot

12 Lists

12.1 Objectives

– Understand the concept of a list.
– Learn basic operations with lists.
– Learn to work with indices.

Lists are useful data structures that can be used to store multiple integer values, GPS
coordinates, logical values, and/or text strings at the same time. Values of different
types can be combined and lists can even contain other lists. For example, a list can
store the robot’s path, positions of all gems in the maze, positions and shapes of obsta-
cles that the robot encounters, and much more. Objects in a list are ordered and they
can be added to the end of a list, accessed by their index, and deleted from any position
of the list.

12.2 Compatibility with Python

Karel lists are a “subset” of lists in the Python programming language. In other words,
everything that you learn here will work in Python, but Python provides additional
functionality for lists which is not present in Karel.

12.3 Creating a list

We use square brackets when creating lists. An empty list U is created as follows:

U = []

Lists can be also created non-empty:

V = [1, 2, 3, 4, 5]

We can use variables when creating a list:

c = 100
W = [0, 50, c]
print W

The output of this code is

48

P. Solin Learn How to Think with Karel the Robot

[0, 50, 100]

Integer numbers can be combined with text strings:

X = [1, "Hello", 2]

Lists can contain other lists as their elements:

Y = [1, "Hello", 2, [1, 2, 3]]

We can print a list:

print "This is the list Y:", Y

The output of this code is:

This is the list Y: [1, "Hello", 2, [1, 2, 3]]

12.4 Accessing list items by their indices

List items can be accessed and either printed, assigned to other variables, or used in
some other way, via their indices. Indices always start from zero. In other words, L[0]
is the first item in the list L, L[1] is the second item, etc. Working with indices can be
illustrated using the following simple code

L = [8, 12, 16, 20]
print "First item:", L[0]
print "Second item:", L[1]
print "Third item:", L[2]
print "Fourth item:", L[3]

whose output is

First item: 8
Second item: 12
Third item: 16
Fourth item: 20

49

P. Solin Learn How to Think with Karel the Robot

12.5 Appending items to a list

An arbitrary object obj (integer, text string, logical value, another list, etc.) can be ap-
pended to the end of an existing list using the append() function. For a list L this
would be

L.append(obj)

For illustration, the code

K = [1, 11]
K.append(21)
print K

has the output

[1, 11, 21]

12.6 Removing items via the pop() function

The ith item (where indices start from zero) can be deleted from a list L and assigned
to a variable x via

x = L.pop(i)

For illustration, let us create a list X containing three text strings "Monday", "Tuesday"
and "Wednesday", and then delete the second item:

X = ["Monday", "Tuesday", "Wednesday"]
day = X.pop(1)
print day
print X

The output of this code is

Tuesday
[’Monday’, ’Wednesday’]

50

P. Solin Learn How to Think with Karel the Robot

If the pop() function is used without an index, it removes and returns the last object
of the list:

day = X.pop()
print day
print X

Output:

Wednesday
[’Monday’]

12.7 Deleting items via the del command

The purpose of the del command is similar to the pop() function except that the
deleted object is destroyed (it cannot be assigned to a variable). The ith item can be
deleted from a list L via

del L[i]

For illustration, the output of the code

L = ["Monday", "Tuesday", "Wednesday"]
del L[0]
print L
del L[0]
print L

is

[’Tuesday’, ’Wednesday’]
[’Wednesday’]

12.8 Length of a list

The function len(X) returns the length of the list X. For illustration, the code

51

P. Solin Learn How to Think with Karel the Robot

M = ["John", "Josh", "Jim", "Jane"]
n = len(M)
print "Length of the list is", n

has the output

Length of the list is 4

12.9 Parsing lists

In Karel, lists can be parsed via the for command that is the same as the correspond-
ing command in Python. For illustration, the following code defines a list M consisting
of four numbers 1, 2, 3, 4 and prints each of them, increased by two:

M = [1, 3, 5, 7]
for n in M

print inc(n, 2)

The output is:

3
5
7
9

12.10 Recording robot’s path

Let us take the function measurewall from Subsection 11.7 and adjust it in such a
way that the robot’s path is recorded in a list and returned. The new function will be
called recordpath:

52

P. Solin Learn How to Think with Karel the Robot

Function to record robot’s path:
def recordpath

L = [[gpsx, gpsy]]
while wall
left
if not wall

go
L.append([gpsx, gpsy])
right
if not wall
go
L.append([gpsx, gpsy])
right
if not wall

return L

Record the path and print it:
print recordpath

This time we will use a shorter wall so that the resulting list is not too long:

Fig. 31: Recording robot’s path.

Running the program with the maze from Fig. 31 yields:

53

P. Solin Learn How to Think with Karel the Robot

[[5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [6, 9],
[7, 9], [8, 9], [9, 9], [9, 8], [9, 7], [8, 7], [7, 7],
[8, 7], [9, 7], [9, 6], [9, 5], [8, 5], [7, 5], [8, 5],
[9, 5], [9, 4], [9, 3], [8, 3], [7, 3], [6, 3], [6, 4]]

This is just as it should be – recall that the coordinates start with [0, 0] which is the
bottom-left corner square.

12.11 Replaying robot’s path from a list

Now we will teach Karel to move according to a path that is stored as a list of GPS coor-
dinates. More precisely, the path will be given in terms of [gpsx, gpsy] pairs stored
in a list L. As a first step, we need to implement four functions that will turn the robot
to face North, East, South and West. We also implement a procedure gotoposition
that moves the robot from any initial position to a position NEWX, NEWY:

Turn North:
def turnnorth

while not north
left

Turn East:
def turneast

turnnorth
right

Turn South:
def turnsouth

turneast
right

Turn West:
def turnwest

turnnorth
left

54

P. Solin Learn How to Think with Karel the Robot

Move from the current position to
a new position [NEWX, NEWY]:
def gotoposition

Horizontal direction first:
posx = gpsx
if posx < NEWX

turneast
repeat dec(NEWX, posx)

go
else

turnwest
repeat dec(posx, NEWX)

go
Vertical direction:
posy = gpsy
if posy < NEWY

turnnorth
repeat dec(NEWY, posy)

go
else

turnsouth
repeat dec(posy, NEWY)

go

As you can see, we are not assuming that the new position is adjacent to the current
one – this makes the procedure gotoposition more generally usable. The last step is
easy, we just need to parse the list L, and make the robot go to every new position:

Parse list L, always go to the
next position:
def playlist

n = len(L)
i = 0
repeat n

newpair = L[i]
NEWX = newpair[0]
NEWY = newpair[1]
gotoposition
inc(i)

55

P. Solin Learn How to Think with Karel the Robot

The variable newpair is there because Karel does not allow double indices. What re-
mains to be done now is to just run the program with a sample list L:

Sample list L:
L = [[3, 10], [5, 5], [10, 10], [1, 1]]
We need these two global variables:
NEWX = gpsx
NEWY = gpsy
Go!
playlist

The reader can notice usage of global variables NEWX, NEWY and L here. This is not the
best programming practice but the Karel language does not allow functions to accept
parameters, so it needs to be done this way for the moment. We plan to implement
passing parameters into functions soon.

12.12 Recording positions of gems

Gems are distributed randomly along the maze perimeter. The squares may contain
more than one gem. The robot should walk the maze perimeter and record the posi-
tions and counts of all gems into a list. Each list entry should have the form [gpsx,
gpsy, number]. At the end, the robot should print the list.

Fig. 32: Gems are distributed randomly along maze perimeter.

56

P. Solin Learn How to Think with Karel the Robot

One possible program to do this looks as follows. First we write a function countgems
that will count the number of gems in a square and return their number:

def countgems
num = 0
Collect all gems:
while gem
get
inc(num)

Put the gems back:
repeat num

put
return num

Then we can use this function to obtain the desired list:

Locate all gems:
def locategems

repeat 4
while not wall

go
if gem
L.append([gpsx, gpsy, countgems])

left
return L

Call the main function:
L = []
listofgems = locategems
print "Here is the report:"
print listofgems

For the maze shown in Fig. 32, the output of the program is

Here is the report:
[[2, 0, 3], [4, 0, 1], [7, 0, 2], [10, 0, 7], [14, 0, 1],
[14, 2, 4], [14, 6, 4], [14, 10, 2], [11, 11, 2], [7, 11, 3],
[6, 11, 1], [2, 11, 2], [0, 11, 1], [0, 9, 1], [0, 6, 3],
[0, 3, 2]]

57

P. Solin Learn How to Think with Karel the Robot

12.13 Lists contained in other lists

In some of the latest programs we encountered lists that were contained in other lists.
In other programming languages, items of embedded lists are accessed via multiple
indices. This is not allowed in Karel, but it can be done without multiple indices as
well. Look, for example, at the following code that goes through the list L from the
last program, and creates another list L2 that only contains the counts of gems (their
coordinates are left out):

L2 = []
for x in L
L2.append(x[2])

print "Skipping the coordinates:"
print L2

58

P. Solin Learn How to Think with Karel the Robot

13 Tour of Logic

13.1 Objectives

– Review elementary logic.
– Practice working with logical expressions.
– Learn about truth tables.

13.2 Simple logical expressions

As we already know, logical expressions are expressions that are either True or False.
We say that True or False is their value. Here are some real-life examples, try to
answer them with True or False:

– "I am 12 years old."
– "My dad is a teacher."
– "My school is a STEM Academy."

And here are some Karel examples:

– wall ... True if the robot is facing a wall, False otherwise.
– gem ... True if a gem is beneath the robot, False otherwise.
– tray ... True if a tray is beneath the robot, False otherwise.
– north ... True if the robot is facing North, False otherwise.
– home ... True if the robot is home, False otherwise.
– empty ... True if the robot’s bag is empty, False otherwise.

13.3 Complex logical expressions

In programming as well as in real life we often deal with logical expressions that are
more complex. Often we use two or more simple logical expressions in one sentence,
and moreover we combine them with logical operations and, or or not.

For example, the sentence "I will go skiing on Saturday if weather is good and if
Michael joins me." includes three simple logical expressions. Let’s call them for brevity

A = "I will go skiing on Saturday."
B = "The weather is good."
C = "Michael joins me."

There is a logical operation and between the expressions B, C. The original sentence
can be written briefly as

59

P. Solin Learn How to Think with Karel the Robot

if B and C then A

We love this kind of brevity in programming because it makes the code short. Let’s
say that we can predict the future and we know that the weather will be good and that
Michael will go as well. Then we can translate the above condition into computer code.
We also print the resulting value of A at the end:

Let’s say that weather will be good
and Michael will join you:
B = True
C = True
This is how you decide:
if B and C

A = True
else

A = False
Print the result:
if A

print "I will go ski on Sunday."
else

print "I will not go ski on Sunday."

Output:

I will go ski on Sunday.

13.4 Truth tables

Each of these three logical operations comes with its own truth table that summarizes
its results for different values of operands. The truth table for the logical and is:

A B A and B

True True True
True False False
False True False
False False False

The truth table for logical or is:

60

P. Solin Learn How to Think with Karel the Robot

A B A or B

True True True
True False True
False True True
False False False

The truth table for logical not is:

A not A

True False
False True

And finally, the truth table for if A then B is:

A B if A then B

True True True
True False False
False True True
False False True

Some people have difficulty wrapping their head around the last table. They ask: How
can the expression if A then B be true when A is false? But it is the case. Consider the
following example: "If Earth is flat, then Moon is flat as well.". This expression is true,
there is nothing wrong with it. Since Earth is not flat, the rest is irrelevant.

61

P. Solin Learn How to Think with Karel the Robot

14 Randomness

14.1 Objectives

– Learn how to make random decisions using the rand command.
– Learn to simulate random processes.

Karel can make random decisions via the command rand that returns with equal prob-
ability either True or False. Typical usage of this command is

if rand
do_something

else
do_something_else

14.2 Using random moves to search entire maze

As a first example, here is a nice short program that makes Karel walk randomly
through the maze and look for gems:

This is a simple way to
create an infinite loop:
while True

Make a random number of steps forward:
while rand

if not wall
go

if gem
get

Turn either right or left:
if rand

right
else

left

After some time (it may take a while) the robot reaches all reachable gems and collects
them! The program is in fact an infinite loop, so you will have to eventually stop it via
the red button.

62

P. Solin Learn How to Think with Karel the Robot

15 Recursion

15.1 Objectives

– Understand what recursion is and when it can be useful.
– Learn to write good recursive algorithms.

By a recursive algorithm we mean an algorithm that makes a call to itself. How does
it sound? In our life we use recursion all the time. For example, when we descend a
staircase, our algorithm is:

Descend_staircase
Descend_one_step
If this_was_not_the_last_step

Descend_staircase

Recursion is not applicable to all types of problems, but it can be very helpful, espe-
cially when:

– The problem can be reduced to the same one, just smaller in size.
– The same algorithm can be applied to solve the smaller problem.

In the program, this means that some command calls itself, either directly or through
other commands.

15.2 How it works

Consider the following program:

def reach_wall
if not wall

go
reach_wall

reach_wall

Initial position of the robot is shown in Fig. 33:
When the command reach_wall is first called, the robot stands three steps away
from the wall and thus the if not wall condition passes. Then the command go
follows and the robot’s position changes as shown in Fig. 34.
Next the robot executes the reach_wall command that follows the go command. A
good way to understand what happens is to imagine that the command is replaced

63

P. Solin Learn How to Think with Karel the Robot

Fig. 33: Robot’s initial position.

Fig. 34: Robot’s position after making the first step forward.

with its own body. So the corresponding code would look as follows:

if not wall
go
if not wall

go
reach_wall

Since the robot is two steps away from the wall, the second if not wall condition
passes and he makes a second step forward. His new position is shown in Fig. 35.

Fig. 35: Robot’s position after making the second step forward.

Next the robot executes the third reach_wall command. Again we can imagine that
the command is replaced with its own body. The corresponding code would look as
follows:

64

P. Solin Learn How to Think with Karel the Robot

if not wall
go
if not wall

go
if not wall

go
reach_wall

Since the robot is one step away from the wall, the third if not wall condition
passes and he makes a third step forward. His new position is shown in Fig. 36.

Fig. 36: Robot’s position after making the third step forward.

Now the robot stands in front of the wall. The reach_wall command is executed one
more time, so we can imagine that its body is pasted into the code one last time:

if not wall
go
if not wall

go
if not wall

go
if not wall

go
reach_wall

However, now the if not wall condition does not pass, which means that the pro-
gram is finished.

Of course, in this example it would have been much easier to use a while loop but
that was not the point. We will encounter situations where recursive algorithms are
much easier to write than non-recursive ones.

65

P. Solin Learn How to Think with Karel the Robot

15.3 The base case

In the last example, to prevent infinite recursion, we used an if statement. The else
statement can be omitted which means "else do nothing". In recursive algorithms, we
always need an if or if-else statement of some sort, where one branch makes a re-
cursive call while the other one does not. The branch without a recursive call is called
the base case. A bad example of a recursive command without a base case would be

def turn_forever
left
turn_forever

turn_forever

This program is an infinite recursion that needs to be stopped using the red stop button.

15.4 Diamond staircase revisited

Recall the Staircase example from Section 10:

Fig. 37: The Staircase problem.

The goal is to climb the stairs, collect all gems, and enter the home square. Here is a
recursive program to do this:

66

P. Solin Learn How to Think with Karel the Robot

def climb_stairs
if not home

left
go
right
go
if gem

get
climb_stairs

climb_stairs

If an algorithm comes in both a recursive and a non-recursive version, then the follow-
ing should be taken into account:

– The recursive version will be slightly slower than a non-recursive one. The reason
is the overhead related to creating a new instance of the recursive command and
calling it.

– The recursive version will also require more memory – when a recursive command
is called 1000 times, then it actually exists in 1000 copies in the memory. Hence,
recursion is not recommended with very large numbers of repetitions.

Recursive algorithms are used mainly where non-recursive ones are cumbersome to
design. For example, much code written for traversing tree-like data structures is re-
cursive. Also certain sorting algorithms are more naturally written in recursive form.
We will discuss these subjects in more detail later.

15.5 Mutually recursive commands

Recursion can have interesting forms. For example, there can be a pair of commands
that call themselves mutually, such as the commands odd and even in the following
example (that also solves the Staircase problem). Note the presence of base case in both
recursive commands:

67

P. Solin Learn How to Think with Karel the Robot

def climb_step
left
go
right
go
get

def odd
if not home

climb_step
even

def even
if not home

climb_step
odd

odd

68

P. Solin Learn How to Think with Karel the Robot

16 Appendix - Overview of Functionality by Mode

16.1 First Steps (Section 4)

In First Steps, Karel can be guided by clicking on buttons:

– go ... make one step forward.
– left ... turn left.
– right ... turn right.
– put ... put a gem on the ground.
– get ... pick up a gem from the ground.

16.2 Programming Mode (Sections 5 – 15)

In Programming Mode, Karel has the following functionality:

– go ... make one step forward.
– left ... turn left.
– right ... turn right.
– put ... put a gem on the ground.
– get ... pick up a gem from the ground.
– repeat ... counting loop (repeat an action a given number of times).
– if - else ... condition.
– while ... conditional loop (repeat an action while a condition is satisfied).
– def ... define a new command.
– wall ... sensor that checks if the robot faces a wall.
– gem ... sensor that checks if there is a gem beneath the robot.
– tray ... sensor that checks if there is a tray beneath the robot.
– empty ... sensor that checks if the robot’s bag with gems is empty.
– home ... sensor that checks if the robot is in the home square.
– north ... sensor that checks if the robot faces North.
– print ... print strings and variables.
– gpsx ... GPS coordinate in the horizontal direction.
– gpsy ... GPS coordinate in the vertical direction.
– a = 0 ... create a new variable a and initialize it with zero.

For additional ways to initialize variables see Subsection 11.8.
– inc(a) ... increases the value of variable a by one.
– inc(a, value) ... increases the value of variable a by value.
– dec(a) ... decreases the value of variable a by one.
– dec(a, value) ... decreases the value of variable a by value.
– rand ... random command (returns randomly True or False).

69

P. Solin Learn How to Think with Karel the Robot

– return ... returns a value, to be used in functions.
– and ... binary logical and.
– or ... binary logical or.
– not ... unary logical not.
– L[] ... create an empty list L.
– len(L) ... length of list L.
– L[i] ... object at position i in list L. Note: L[0] is the first item in the list.
– L.append(x) ... appends x to the end of list L.
– x = L.pop() ... removes the last item of list L and assigns it to x.
– del L[i] ... removes from list L object at position i.
– for x in L ... Python way to parse lists.
– Numerical and logical (Boolean) variables.
– Complex logical expressions.
– Functions that return values.
– Lists.
– Recursion.

17 What next?

Congratulations, you made it through Karel the Robot! We hope that you enjoyed the
course. If you can think of any way to improve the application Karel the Robot or this
textbook, we would like to hear from you. If you have an interesting new game or ex-
ercise for Karel, please let us know as well.

You are now ready to learn a next programming language! We would recommend
Python which is a modern dynamic programming language that is used in many ap-
plications in business, science, engineering, and other areas. NCLab provides a Python
course.

In any case, our team wishes you good luck, and keep us in your favorite bookmarks!

Your Authors

70

